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Abstract—One of the most challenging tasks for
ophthalmologists is early screening and diagnosis of ocular
diseases from fundus images. However, manual diagnosis of
ocular diseases is difficult, time-consuming and it can be prone
to errors. That is why a computer-aided automated ocular
disease detection system is required for the early detection of
various ocular diseases using fundus images. Due to the
enhanced image classification capabilities of deep learning
algorithms, such a system can finally be realized. In this study,
we present four deep learning-based models for targeted
ocular tumor detection. For this study, we trained the cutting-
edge image classification algorithms such as Resnet-34,
EfficientNet, MobileNetV2, and VGG-16 on the ODIR dataset
consisting of 5000 fundus images that belong to 8 different
classes. Each of these classes represents a different ocular
disease. The VGG-16 model achieved an accuracy of 97.23%;
the Resnet-34 model reached an accuracy of 90.85%; the
MobileNetV2 model provided an accuracy of 94.32%, and the
EfficientNet classification model achieved an accuracy of
93.82%. All of these models will be instrumental in building a
real-time ocular disease diagnosis system.

Keywords—Ocular Disease Classification, Color Fundus
Photography, Ocular Disease Detection, Convolutional Neural
Networks, EfficientNet, VGG-16, Resnet-34, MobileNetV2,
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l. INTRODUCTION

Various ocular diseases are capable of causing permanent
and irreversible damage to the patient’s vision, and in
extreme cases, it can even lead to blindness [1-3]. Although
effective treatments are available for these ocular diseases,
these treatment options can only be implemented if the
disease is diagnosed as early as possible. Ocular diseases are
primarily diagnosed using color fundus photography or CFP
[4]. This technique is utilized in order to record the interior
surface of the human eye so that various types of possible
ocular diseases can be detected [5].

Although this method of diagnosis is effective, it’s still
quite difficult to detect certain ocular diseases using CFP.
Some of the most prevalent ocular diseases, such as
cataracts, myopia, and diabetic retinopathy are difficult to
diagnose as they show very few initial symptoms. [6]
Moreover, the process of manually inspecting and detecting
ocular diseases is a laborious task, and this process is not that
accurate [7].

In recent times deep learning-based neural network
models have shown promising results in medical image
classification and object detection. [8-10] Moreover, that is
why convolutional neural network-based models have been
extensively studied for ocular disease detection [9] [11-12].

This work is licensed under a

Sifatul Alam Shohan
Department of Electrical and Computer
Engineering
North South University
Dhaka, Bangladesh
sifatul.shohan@northsouth.edu

91

K.M.A Salam
Department of Electrical and Computer
Engineering
North South University
Dhaka, Bangladesh
kazi.salam@northsouth.edu

Meng et al. [13] proposed a two-stage process of
utilizing convolutional neural networks (CNN) on fundus
images in order to perform Optic Disc (OD) localization.
Automatic ocular disease classification models have been
proposed by He et al. [14] that are based on knowledge
distillation. This system is built by training and optimizing
two deep networks sequentially.

Roy et al. [15] suggested a fully convolutional deep
architecture called ReLayNet for segmenting retinal layers
and fluids from Optical Coherence Tomography (OCT)
scans. This technique utilizes an encoder-decoder network
for semantic segmentation on OCT scans.

Liefers et al. [16] used a fully convolutional neural
network that had dilated convolution filters in order to
implement a pixel-wise classification on Optical Coherence
Tomography (OCT) scans. The performance of this model
was evaluated on a dataset consisting of 400 OCT scans of
patients who were affected by varying stages of age-related
macular degeneration.

Lee et al. [17] proposed a CNN-based model that can
detect intra-retinal fluid on OCT images. This model was
trained on 1,289 OCT scans, and the images segmented by
the CNN model received a cross-validated Dice score of
0.911.

A novel convolutional multi-task architecture was
proposed by Playout et al. [18] that takes a supervised
learning approach. This model is trained to perform three
tasks simultaneously and those tasks involve segmentation of
bright lesions, segmentation red lesions, and lesion detection.
The area under ROC curve of this model was 0.839.

Hu et al. [19] proposed a retinal vessel segmentation
technique that’s implemented using a convolutional neural
network and fully connected conditional random fields
(CRFs). The accuracy and effectiveness of this model was
evaluated on the color fundus images taken from STARE
[20] and DRIVE [21] datasets.

Gulshan et al. [22] proposed a deep learning-based
algorithm for automating the process of diabetic macular
edema and diabetic retinopathy detection. This task was done
using an optimized neural network-based image
classification model.

Li et al. [23] proposed a deep learning-based system to
detect Glaucomatous Optic Neuropathy (GON). This study
was also done on color fundus photographs. The researchers
had trained a classification model that was trained on 8000
color fundus images. The model achieved a sensitivity score
of 95.6%, specificity of 92.00%, and an AUC score of 0.986.
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Karri et al. [24] presented an algorithm that can identify
different retinal pathologies from optical coherence
tomography images (OCT) images. This algorithm was
developed by fine-tuning a pre-trained convolutional neural
network called GoogleNet [25]. The dataset used in this
study had four distinct classes that included dry age-related
macular degeneration, diabetic macular edema, and no
pathology.

Although almost all of these studies have shown
promising results, only a few of the existing studies have
addressed the task of classifying multiple ocular diseases
from fundus images. Furthermore, an automated ocular
disease diagnostic tool will require a robust model that has
been thoroughly trained on multiple ocular diseases so that it
can detect diseases from color fundus images.

The models that we have discussed so far are highly
effective at performing specific classification or
segmentation tasks such as segmenting retinal vessels and
classifying a specific ocular disease. However, they cannot
be used as a generalized ocular disease detection system.

Our task was to classify ocular diseases from color
fundus photographs as effectively as possible. Although
various CNN-based classification models have been used for
ocular disease classification before, the latest, state-of-the-art
classification models such as EfficientNet [28] and VGG-16
[29] have not been extensively studied in this regard. These
models have been highly effective at classification tasks
performed on various other medical imaging datasets. That is
why we chose to use these models in order to determine their
performance of on ODIR dataset. This way we can figure out
which model would be ideal for building an autonomous
ocular disease detection system.

The Resnet-34 model that we used in our study was
pretrained on a large image classification dataset known as
Imagenet [27]. The Imagenet dataset contains 14 million
images that are categorized into 1000 classes.

This model is then further trained on the ODIR dataset so
that it can be used for classifying ocular diseases. This
process of training a pretrained image classifying model on
custom images is called transfer learning.
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Fig. 1. Alook at the fundus images of the ODIR dataset.

TABLE I. DISTRIBUTION OF THE IMAGES IN THE DATASET
Il DATASET No. Labels Training | Off-Sie | On-Sie All
For this study, we have used the Ocular Disease Cases Training | Training | Cases
Intelligent Recognition (ODIR) dataset. [26] It is one of the Cases Cases
largest publicly available multiclass ocular disease detection 1 N 1,135 161 324 1,620
datasets in the world. This dataset was compiled by 2 D 1,131 162 323 1,616
Shanggong Medical Technology Co, limited by taking 3 G 207 30 58 307
collecting fundus images from different hospitals in China. 2 C 211 32 64 243
The fundus images of this dataset are split into eight different 5 A 171 25 47 205
ocular disease classification categories. These categories 6 H 04 14 30 138
include seven disease classes that are diabetes (D), cataract 7 M 177 23 49 249
(C), glaucoma (G), age-related muscular degeneration (A), 3 0 944 134 268 1,346
myopia (M), hypertension (H), and other
abnormalities/diseases (O). In total, this dataset contains 1200 «
5000 cases of color fundus photographs (CFPs), and it is split
into training and testing subsets. Roughly 3500 cases are 1000
used for training, and the rest are used for testing. Some
sample images of the ODIR dataset can be observed in figure § 800
1. S
T . . . £ 600
The class distribution of the images is illustrated in the o
bar chart shown in figure 2. And we can see the details & 400
regarding the image distribution of the dataset in table I. 566
Ill.  METHODOLOGY ;
A. Classification Using Resnet-34 N D G c A H M o)
Resnet refers to a convolutional neural network Disease categories
architecture that’s extensively used as a classification model. Fig.2. Bar chart representing the distribution of the dataset.
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Fig. 3. Resnet-34 Architecture.

The overall architecture of the Resnet-34 model is shown
in figure 3. The architecture of the Resnet-34 model might
seem a bit complicated, which is why a more simplified
illustration is shown in figure 4. At first, we loaded the
dataset into a colab notebook for training the Resnet-34
model. For creating this model, we utilized the FastAi
library. After that, we downloaded a custom pretrained
Resnet image classification model.
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Fig. 4. Simplified representation of Resnet-34 model.

Next, we initialized our classification model by fine-
tuning its final layer while the rest of the model was frozen.
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This way, the model was able to learn about all of the
necessary pretrained features. After that the model was run
for 50 epochs. We used a training callback function called
“early stopping” that stops the training process if the
validation loss of the model does not decrease for more than
20 epoches.

After that, we unfroze the model’s parameters and then
proceeded to calculate the ideal learning rate. The model was
further training for 50 epochs to ensure our classification
model provided the maximum performance.

B. Classification Using EfficientNet

EfficientNet is one of the most sophisticated models out
there when it comes to custom image classification. It is an
open-source, state-of-the-art CNN-based model that was
developed by Google Brain. In order to create this model, we
used the Keras deep learning framework, and we
implemented it in Google Colab. We used a supervised
learning approach to training the EfficientNet model on the
ODIR dataset.

This model was trained by passing the features of the
training images into the deep neural network, and its task is
to provide the probabilities of the test images belonging to a
particular class. In this case, the class that has the highest
probability according to the model is considered to be the
model’s prediction. The architecture of the EfficientNet
model is illustrated in figure 5.
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Fig. 5. EfficientNet Architecture

EfficientNet was developed in order to test how to
effectively scale the overall size of the convolutional neural
networks (CNNSs). The comparison of the various scaling
methods used in EfficientNet is shown in figure 6. Just like
Resnet-34, the EfficientNet model is also pretrained and
benchmarked on the ImageNet dataset. That’s why it has a
strong understanding of the general features that are required

to classify the images.
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Fig. 6. Scaling of EfficientNet architecture.

While creating and running this model, we enabled the
GPU environment on our Google Colab notebook. Next, we
had to ensure our model was running on the TensorFlow 1.x
environment and Keras 2.3.1 was installed. After that, we
imported the EfficinetNetBO model from the Keras library.
Then we set the input resolution of the images to be 150 x
150.
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The next task was to import our ocular disease dataset
into the notebook and then utilize transfer learning in order
to classify ocular diseases from color fundus images. After
importing the fundus images, we passed the data through a
training generator function to prepare it for training.

Next, we set the number of epochs for which our model
will train on the dataset to be 150, and the final layer of the
EfficientNet model was removed so that it can be replaced
by eight layers that correspond to the eight classes of our
dataset. Finally, we trained the model and then evaluated its
performance using the images inside the test directory.

C. Classification Using MobileNetV2

MobileNetV2 is an image classification model that was
developed by Google, and its task is to provide efficient real-
time classification even in constrained computing
environments such as smartphones. [30] This model is quite
similar to the previous two models in the sense that it also
utilizes transfer learning, and it’s pretrained on the ImageNet
dataset as well. The architecture of the MobileNetV2 model
is illustrated in figure 7.

This image classification framework uses an inverted
residual structure in which the input and output layers of the
residual blocks comprise thin bottleneck layers. Moreover,
the convolutions used in this model are quite lightweight and
it does not have non-linearities in its narrow layers.

In order to implement the MobileNetVV2 model on the
ODIR dataset, we had to import the dataset into our Colab
notebook and then convert the images into a TensorFlow
dataset. We built the TensorFlow dataset by using the
ImageForlder API provided by the TensorFlow framework.
After that, we instantiated the MobileNetV2 classification
model in which the classification layers were dependent on
the last layer before the flatten operation was performed on
it. Then we set the compiled model using categorical cross
entropy as the loss function and accuracy as the evaluation
metric. Finally, we generated the Accuracy vs. Epoch and
Cross Entropy vs. Epoch graphs in order to evaluate the
efficiency of our model.
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Fig. 7. MobileNetV2 architecture.
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D. Classification Using VGG16 Model

The VGG-16 model was developed by researchers of
University of Oxford and the VGG-16 paper was published
in 2015. It’s widely regarded as one of the best image
classification models out there, and it achieved 92.7%
accuracy on the ImageNet dataset. It is built using a large
number of tiny convolutional filters that allow the model to
learn about complicated pixel relational data.

At first, we download the required libraries and
dependencies to make sure that the environment is
compatible with the VGG-16 classification model. The
VGG-16 model expects the data to have an input size of 224
X 224. Moreover, that is why we had to resize our training
images accordingly.

After that, we performed some preprocessing on the
images in order to make them suitable for the VGG-16
model. This was done using the ImageDataGenerator module
of the Keras library. Those preprocessing steps involved
setting the re-scale value to 1/255, shear range to 0.2, zoom
range to 0.2, and the value of horizontal flip to true. The task
of the ImageDataGenerator function is to generate the
preprocessed images based on the parameters that we have
set so that those images can be fed to the VGG-16 model.
Some samples of the preprocessed images can be seen in
figure 8.

Fig. 8. A look at the preprocessed ODIR datasets.

In order to make our VGG-16 model train and predict on
eight different ocular disease classes, we had to append two
Dense layers to the existing VGG-16 architecture. The
overall architecture of the VGG-16 model after modification
is shown in table I1.

This model is set to use the Adam optimizer and
categorical cross entropy loss function. It also used the
softmax activation function. After those parameters were set,
we ran the model on the training set for 150 epochs. When
the training was finished, we evaluated its performance on
the validation set.
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E. Evaluation of The Models

In order to analyze the results provided by the
classification models in a comprehensible way, we have
used evaluation metrics such as accuracy, precision, recall,
F1 score, etc. The formulas of these evaluation metrics are
shown below:

(TP+FN)
Accuracy = ————— @
TP+TN+FP+FN
.. TP
Precision = 2
TP+FP
TP
Recall = 3)
TP+FN
2xPrecision*Recall
Fl=—F"7—"— @)
Precision+Recall

Here,

TP = True Positive (The total number of images that are
correctly detected to be positive)

FP = False Positive (The total number of images that are
predicted to be positive but actually are negative)

TN = True Negative (The number of images that are
accurately predicted to be negative)

FN = False Negative (The number of images that are
incorrectly predicted to be negative)

TABLEIl.  VGG-16 ARCHITECTURE
Layer (type) %E;%;t Param #
blockl convl (Conv2D) ('\12022?’6242)4’ 1792
blockl conv2 (Conv2D) ('\12022(?’6242)4’ 36928
blockl_pool (MaxPooling2D) (Nﬁnz‘?'éﬂfl)z’ 0
block2 convi (Conv2D) (Tf;elgé)z 73856
block2_conv2 (Conv2D) (l;li)gelgé)Z ' 147584
block2_poo] (MaxPooling2D) (Egnizgf 0
block3 conv (Conv2D) (';'2”29525 205168
block3_conv2 (Conv2D) ('g'gnzesg’f 590080
block3 conv3 (Conv2D) (Egngsgf ' 590080
block3_pool (MaxPooling2D) (,;lgn§5¢23)8 0
blocké conv1 (Conv2D) “;'g”gé? 1180160
block4_conv2 (Conv2D) “;'g”glgf 2350808
block4_conv3 (Conv2D) (r;gnglg)s 2359808
block4_pool (MaxPooling2D) (Tznglg 0
blocks_conv! (Conv2D) (Tgf‘g'l;;" 2350808
block5_conv2 (Conv2D) (Tgf‘g'lg' ’ 2350808
block5_conv3 (Conv2D) (Tgf‘g'l;;" 2359808
block5_pool (MaxPooling2D) (Nogf,z)?, I8 0
flatten (Flatten) (None, 0
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25088)
fcl (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312

Total params: 134,260,544
Trainable params: 134,260,544
Non-trainable params: 0
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IV. EXPERIMENTAL RESULTS

In total we had to perform four different experiments in
order to determine the performance of the four classification
models (Resnet-34, EfficientNet, MobileNetV2, VGG-16).

A. Resnet-34 Classification Model

We trained the Resnet-34 model for up to 200 epochs for
the ocular disease classification task. Its performance was
impressive, and it achieved an accuracy of 93.47% on the
training set. Moreover, it achieved an accuracy of 90.85% on
the test set, which comprised of previously unseen images.
We had split the dataset consisting of 5000 color fundus
photographs into a training set comprising 3500 images
(70% of the total images) and a test set of 1500 images (30%
of the total images) of the total MRI scans). We primarily
evaluated our four models on the test set in order to make it
easy for us to compare and contrast the models with one
another. This was done to simulate how the Resnet-34 model
would perform in a real-life scenario with previously unseen
color fundus images. The output generated by the Resnet-34
model on the test set is shown in figure 10.

The confusion matrix for test set is shown in Figure 9.
Out of the eight classes the most successful prediction made
on the other diseases class. Overall, the performance of this
model was quite satisfactory on the test set.
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Fig. 9. Confusion matrix produced by the Resnet-34 classification model

A confusion matrix is a type of layout that provides
visualization of the performance of an algorithm. Each row
of the confusion matrix represents the instances in a
true/actual class. And each column of the matrix represents
the instances in a predicted class. The values located at the
main diagonal of the matrix represents the instances at which
the model was able to accurately predict the class to which
an image belongs to. On the other hand, all of the other
nonzero values in the confusion matrix represents the
instances at which the model had incorrectly classified an
image.
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The precision of the Resnet-34 model is 93.70%, and its
recall was 92.65%. Furthermore, the model achieved an F1
score of 93.17%. The class-wise accuracy, precision, recall
and F1 score of this model is given in table number III.

TABLE III. PERFORMANCE OF THE RESNET-34 MODEL
Class Accuracy Precision Recall F1 Score
AMD 99.64% 0.99 0.98 0.98

Cataract 99.64% 0.98 0.99 0.98
Diabetes’ 92% 0.57 0.97 0.72
Glaucoma 92.07% 0.98 0.61 0.75

Hypertension 99.34% 0.98 0.99 0.98

Normal 99.39% 0.98 0.98 0.98

Myopia 99.52% 0.99 0.97 0.98

Other 99.82% 0.98 1.0 0.99

B. EfficientNet Classification Model

Just like the Resnet-34 model we also trained the
Efficient-NetBO model for 500 epochs. It performed
exceptionally well on the training set as well as the test set. It
achieved an accuracy of 94.97% on the training set. And it
achieved an accuracy of 93.82% on the test set.

The confusion matrix produced by the EfficientNetBO
model on the test set is shown in Figure 11. This model
provided the most successful prediction on the — class.

The EfficientNet model had an overall precision of
92.73%, and its recall was 96.25%. Furthermore, this model
achieved an F1 score of 93.74%. The class-wise analysis of
the accuracy, precision, recall, and F1 score of the
EfficientNet model is given in table number V. As
mentioned before, we used the softmax function as a loss
function for the EfficientNet model. The figure 12 shows the
training and validation accuracy of the model. Here the dots
represent the training accuracy and the curve below shows
the validation accuracy. We can observe from this figure that
the training accuracy drastically increases as the number of
epochs increases. The validation accuracy increases as well
but it sometimes declines as well during the training process.

And the graph shown in figure 13 illustrates the training
and validation loss of the EfficientNet model. Here the x-axis
represents the number of epochs and the y-axis represents the
training and validation loss of the model.

We can clearly see that both the training and validation
losses of the EfficientNet model drastically decreases as the
number of epochs increase.

C. MobileNetV2 Classification Model

The performance of the MobileNetV2 model was fairly
close to the previous two classification models. It achieved
an accuracy of 95.56% on the training set. And it achieved an
accuracy of 94.32% on the test set.

The training and validation accuracy graph as well as the
training and validation loss graph is illustrated in figure 14.
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Fig. 10. Output generated by Restnet-34.
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Fig. 11. Confusion Matrix generated by EfficientNet

The MobileNetV2 model had a precision score of
93.33%, and its recall was 89.67%. Furthermore, this model
achieved an F1 score of 91.46%. The details of the class-
wise accuracy, precision, recall and F1 score of the model is
shown in table number V.

TABLE IV. PERFORMANCE OF THE EFFICIENTNET MODEL
Class Accuracy Precision Recall F1 Score
AMD 99.27% 0.95 0.98 0.96

Cataract 98.93% 0.98 0.92 0.95

Diabetes 99.27% 0.95 0.99 0.97

Glaucoma 98.27% 0.95 0.99 0.97

Hypertension 98.73% 1.0 0.96 0.98
Normal 99.53% 0.94 0.97 0.98
Myopia 98.67% 0.93 0.92 0.92

Other 99% 0.99 0.92 0.96
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Fig. 13. Training and Validation Loss of EfficientNet Model.

D. VGG-16 Classification Model

Out of the four classification models the VGG-16 model
had the best performance in terms of accuracy. It achieved an
accuracy of 98.65% on the training set. The accuracy
achieved it achieved on the test set was 97.23%. The
confusion matrix of the VGG-16 model is shown in figure
15.

We can observe from figure 14 that the training as well
as the validation accuracy rises exponentially as the nhumber
of epochs increase. Furthermore, both training and validation
loss (cross entropy) decreases as the number of epochs rises.
This happens because as the model gets trained for more and
more epochs it learns more about the features of the images
and it gets better at differentiating between the images
belonging to different classes, thus increasing its accuracy.

The VGG-16 model had a precision score of 96.73%, and
its recall was 93.76%. Furthermore, this model achieved an
F1 score of 95.22%. The class-wise details of this model are
included in table number VI.

Our models have outperformed some of the existing
solutions to ocular disease detection and classification. For
instance, He et al. [9] had achieved an F1 score of 90.4% of
the ODIR dataset using their ResNet-34 model.

However, our Resnet-34 model achieved an F1 score of
93.17%.
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Fig. 14. Training and Validation Accuracy and Loss Graph of the VGG-16

Model.

TABLE V. PERFORMANCE OF THE MOBILENETV2 MODEL
Class Accuracy Precision Recall F1 Score
AMD 98.73% 0.94 0.94 0.94

Cataract 97.73% 0.97 091 0.94
Diabetes 98.47% 0.91 0.96 0.93
Glaucoma 98.67% 0.94 0.99 0.93
Hypertension 92.47% 0.92 0.93 091
Normal 98.13% 0.93 0.95 0.94
Myopia 98.20% 0.92 0.88 0.90
Other 98.87% 0.99 0.91 0.95
TABLE VI. PERFORMANCE OF THE VGG-16 MODEL
Class Accuracy Precision Recall F1 Score
AMD 98.27% 0.94 0.90 0.92
Cataract 97.6% 091 0.88 0.89
Diabetes 97.87% 0.88 0.93 0.91
Glaucoma 97.67% 0.92 0.95 0.93

Hypertension 96.89% 0.87 0.92 0.90
Normal 97.93% 0.93 0.94 0.93
Myopia 97.00% 0.85 0.84 0.94

Other 98.33% 0.98 0.89 0.93
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Fig. 15. Confusion matrix produced by VGG-16.
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This was because we had trained our model for more
epochs and we had fine-tuned our model for better gaining
accuracy.

V.  CONCLUSION

In this study, we have developed four neural network-
based ocular disease, classification models. Those models are
Resnet-34, EfficientNet, MobileNetV2 and VGG-16. Out of
which, the VGG-16 provided the best accuracy of 97.23%
when it comes to classifying ocular diseases from fundus
photographs. The performance of the other models was also
satisfactory. We have performed extensive experiments on
the publicly available ODIR- 2019 dataset to validate our
proposed method's effectiveness. Our proposed method can
generate more impressive results than the existing CNN-
based ocular disease classification models while at the same
time requiring lower computational power.

The best part about our proposed method is that it can
easily be extended to other types of medical image-based
disease classification. Furthermore, the models described in
this study can be used in order to build a user-friendly, real-
time ocular diseases classification system. Such a system will
be a great help to the medical professionals and it will
revolutionize the field of ocular disease diagnosis.
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