

Detection of SAR and Penetration Depth of EM waves on Human body with respect to Cellular 4G/LTE Base Stations

¹GVS Brijesh, ²Naveen N, ³Ankit Chaurasiya, ⁴Naga Teja, ⁵Devasis Pradhan
^{1,2,3,4}Final Year B.E Students, Department of Electronics & Communication Engineering,
⁵Assistant Professor, Department of Electronics & Communication Engineering
Acharya Institute of Technology, Bengaluru, Karnataka, India
devasispradhan@acharya.ac.in

Abstract— The advancement of cell phone correspondence design on the planet has further developed, leading to public worry over conceivable medical problems and openness to radio recurrence of electromagnetic energy produced from the cell base stations. The miniature strip fixes receiving wire display a huge job in electromagnetic energy communicating and getting conditions in a cell phone. In day-to-day existence, people are impacted by the electromagnetic radiations produced from cell base stations. Because of the intricacy of the human body structure, the estimation of the impact of the radiation is so troublesome. Two central points are predominantly considered among different elements while considering the impact of radiation from cell base station, they are specific absorption rate (SAR) and skin depth (SD). The specific absorption rate (SAR) and skin depth (SD) are straightforwardly registered as more complicated. In this paper, we assess the mathematical investigation of the SAR and SD concerning the genuine utilization of working recurrence of the cell phone for 4G/LTE correspondence. To start the model, MATLAB recreation devices were utilized and the result from that model was dissected results were contrasted hypothetically and with different scientists.

Keywords—SAR, Penetration Depth, Skin depth, LTE, Base stations, Electromagnetic Wave, Conductivity.

I. INTRODUCTION

Study and examine the impact of electromagnetic (EM) waves transmitted from cell receiving wires or base stations on the human body and its natural boundaries. Perform Specific assimilation rate (SAR) investigation for head, chest, and tissues of other body parts at four distinct frequencies which are 800 MHz, 900 MHz, 1900 MHz, and 2100 MHz. Numerous people don't know anything about the horrendous effects of radiofrequency waves and their work in harmful development and other real risks. According to the coherent evidence, threatening development isn't just associated with PDA radiation; there may be various components in like manner related with its development.[1-3]

They could provoke extended inner intensity level, especially in the head, which has a low edge piece and constructs the potential outcomes of injury in case there is long stretch receptiveness to these RF waves. Mobile phones or other electronic distant devices radiate RF waves in any occasion when they are in reinforcement mode. While using phones, various factors should be taken, similar to the range, region, and system for use to lessen the effects of receptiveness to radiation in the RF. The conscious rate at

which energy is consumed by the human body when introduced to a radio frequency electromagnetic (EM) field is the express standard for dependability (SAR).[4-5]

The SAR (Specific Absorption Rate), gauges the RF power consumed by the human body tissue. SAR is also depicted as the power consumed by the tissue per unit mass and is assessed in watts per kilogram (W/kg). Entrance depth(PD) is an extent of how significant light or any electromagnetic(EM) radiation can penetrate into a human body. Moreover, is portrayed as the significance at which the power of the radiation inside the material tumbles to 1/e (around 37%) of its one of a kind worth at the surfaces [6-9]. Before we get into SAR and entrance profundity, we need to go through FDTD. Since they are the essentials of the above EM and RF waves recreation. FDTD is a method that is used in the propagation of electromagnetic waves. This study centers to repeat the quick expansion in the number or measure of EM (electromagnetic) waves on a material with conductivity and permittivity on the layer. The conceivable sort of Maxwell's circumstance can be utilized to convey discrete electromagnetic waves. The FDTD methodology settles maxwells condition on the organization and figures E and H at grid marks isolated Δx , Δy , and Δz aside, with E and H, en-laced in all of the three spatial perspectives. FDTD includes the impacts of dissipating, transmission, reflection, and ingestion. Advantages of the FDTD ideas on the SAR estimation.[10-12]

II. OVERVIEW

In this investigation, using the restricted qualification time space technique, SAR movements and temperature addition are surveyed in a complicated human head model introduced to the electromagnetic field sent from PDAs and far off area (WLANs) antenna. The results which we got check the crucial to carry out a warm assessment close to the dosimetric one. At the equivalent levels of communicated power, explicit retention rate levels which are in the human body tissues are more likely not precisely beyond what many would consider possible heading, excepting in skin and cerebro-spinal fluid tissues. Besides, it is furthermore asserted that the provoked temperature progress in the brain region, perhaps in all of the attempted conditions, might very well never go above 0.4°C which is fine under the edge for the acknowledgment of warm effects on the neurons.

Since SAR is a genuine sum, which causes the tissue warming considering RF receptiveness, the security rules on bound SAR for distant applications should be still hanging

out there relating to temperature rise in the head. This is because the natural perils are generally owing to temperature rise in the tissue. Disregarding the way that temperature climb is a huge limit, little is had some critical familiarity with it. Since SAR is a genuine sum, which causes tissue warming due to RF receptiveness, the security rules on restricted SAR for distant applications should be not completely settled by temperature expansion in the head. This is in light of the fact that the regular risks are primarily owing to temperature expansions in the tissue. Notwithstanding the way that temperature level is a critical limit, little is had huge familiarity with it. [12-14]

SAR is a genuine sum, which makes the tissue warming due RF transparency, the security rules on restricted SAR for distant applications should be not completely settled similar to temperature rise in the head. This is in light of the fact that the normal dangers are principally inferable from temperature rise in the tissue. Disregarding the way that temperature climb is a huge limit, little is had some critical consciousness of it. Since SAR is a genuine sum, which causes the tissue warming considering RF receptiveness, the security rules on restricted SAR for distant applications should be not completely firmly established by temperature rise in the head. This is because the natural dangers are generally owing to temperature rise in the tissue. In spite of the way that, the temperature climb is a tremendous limit, little is had huge consciousness of it. Since SAR is a genuine sum, which makes the tissue warming due RF transparency, the security rules on confined SAR for distant applications should be not completely firmly established by temperature rise in the head. This is because the natural risks are fundamentally owing to temperature increase in the tissue. [14-15]

The most ludicrous temperature generally happens in the tissue region with the intense center vow. In any case, one ought to see that SAR and temperature dispersal presumably will not have an equivalent profile, since temperature development can in this way be impacted by the climate or obliged limit conditions. A few systems can be used to wrap up the SAR scattering induced by various warming utensils. One method is the key confirmation of the SAR dispersal considering the power conduction condition. The evaluation is for the most part performed on a tissue-tantamount ghost gel. The congruity of the SAR and temperature level dispersals assessed in the vague vision gel (to that in the living tissue) depends on the electrical properties of the apparition gel. The electrical properties depend on the electromagnetic wave repeat and the water content of the tissue. The pieces of the gel can be decided to achieve relative electrical characteristics of the tissue for a specific electromagnetic rehash. The critical pieces of the gel are water, formaldehyde outline, gelatin, and NaCl. Water was used to achieve equivalent water content as the tissue. [4-6]

For adults, a resonance range for most outrageous maintenance is logical between 30 to 100 MHz considering the way that the body perspectives and recurrence of the field are in a comparative huge degree to the implied getting wire influence, which happens when the body level matches half of the recurrence. Recently, how much spread of the RF energy is consumed in a youngster's head because of the utilization of a PDA has been a touchy issue. While investigating this issue, the dielectric properties of the normal tissues for grown-ups are, up until this point, being

stood apart from the shortage of dielectric properties for youths which raised the public worry on whether the young people's heads ingest more electromagnetic energy. A penetration significance, connecting with the looking at locale for resistivity assessment depends upon various variables. The repeat of the whirlpool streams, the electrical conductivity, and the alluring vulnerability of the model impact the significance of the twirl streams going into a material. [6-8]

Radiation Pattern of a Cell Tower Antenna

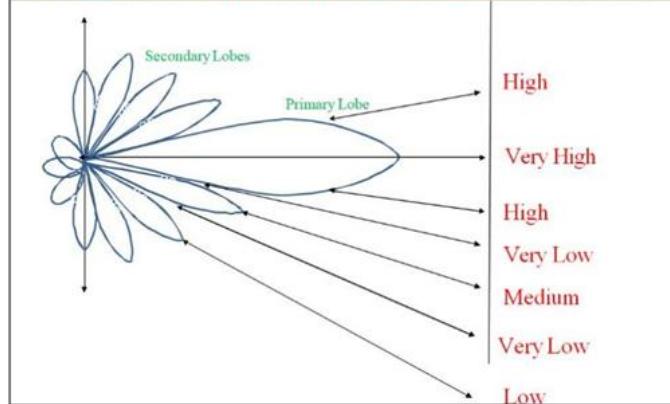


Fig. 2.1 Radiation Pattern of Mobile Antenna

The estimation has the numerical reenactment for the expansion of electromagnetic waves in randomly in homogeneous alluring media by the FDTD technique which has been made. The arranged computation is recognized for separating the chief timing characteristics, as well as seeing the features of the expansion of various types of signs in both sans time and time-subordinate layered with no obvious end goal in mind in homogeneous media. The spread of the prompting of the sine beat, sine sign, and square wave in sans time charming for erratic reasons in homogeneous media with different degrees of stage division of two sorts - with a "diffuse" part of in homogeneities and their "nearby by crushing" is done. The effect on the intermixing of charming granules and the sort of their movement on the traits of the conveyed and reflected messages are revealed. First to comprehend the SAR and Penetration profundity we really want to find the EM in every one of the 3 aspects utilizing the FDTD displaying technique.

Here we are breaking down EM in 3 aspects utilizing FDTD they are

- 1-D
- 2-D
- 3-D

The FDTD technique [1] is a full-wave and strong mathematical strategy for settling Maxwell's conditions. The procedure is one of the key reproduction devices in the investigation of electromagnetic engendering.

2D A point source situated at the focal point of the reproduction space produces electromagnetic radiation which then engenders through the vacuum. Involving a GPU for the 3D case, one can understand the presentation increment of the vectorized code

A 1-D item is a line, or line section, which has length, however no different qualities.

A 2-D item has length and level, yet no profundity. Instances of 2D items are planes like circles, square shapes and different polygons.

TABLE I. DIELECTRIC PROPERTIES OF THE TISSUES AT NON-IDENTICAL FREQUENCY

	900MHz		1800MHz		2100MHz		2600MHz		Mass Density
	ϵ_r	$\sigma(S/m)$	ϵ_r	$\sigma(S/m)$	ϵ_r	$\sigma(S/m)$	ϵ_r	$\sigma(S/m)$	
Blood	18.93	0.38	59.37	2.04	58.85	2.26	58.01	0.86	1040
Bone	12.45	0.14	11.78	0.27	11.59	0.33	11.29	0.42	1850
Brain	45.80	0.77	43.54	1.15	43.05	1.31	42.33	1.6	1040
Fat	11.33	0.11	5.34	0.08	10.92	0.22	5.26	0.11	920
Grey Matter	52.72	0.94	50.08	1.39	49.50	1.57	48.67	1.91	1050
Kidney	58.67	1.39	54.43	1.95	53.58	2.16	52.41	2.38	1020
Liver	46.86	0.85	44.21	1.28	43.64	1.46	42.79	1.78	1040
Muscle	55.95	0.96	54.44	1.39	54.03	1.57	53.37	1.92	1480
Skin	41.40	0.87	46.39	1.82	38.43	1.31	37.85	1.54	1010
Skull	16.62	0.24	15.56	0.43	15.28	0.51	14.83	0.64	1850
White Matter	38.88	0.59	37.01	0.91	36.58	1.05	35.99	1.29	1030

III. METHODOLOGY

There are different techniques utilized for the computation of SAR and two of the most utilized strategies are:

- a. FDTD (Finite Difference Time Domain) -FDTD is a mathematical investigation strategy utilized for displaying computational electrodynamics is a mathematical examination procedure utilized for demonstrating computational electrodynamics.
- b. MOM (Method of Moment) The Method of Moments (MoM) is a tough, full-wave mathematical procedure for taking care of open limit electromagnetic issues. By applying this procedure, you can examine electromagnetic radiation, dispersing, and wave proliferation issues with pretty much short calculation times and sufficient figuring assets.

We are going to take Indian standard frequency bands of 900MHz, 1800MHz, and 2400MHz for this analysis. Maxwell presented a bunch of four conditions to depict how electromagnetic waves are created; the conditions are

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t} \quad (1)$$

$$\nabla \times \mathbf{H} = \sigma \mathbf{E} + \epsilon \frac{\partial \mathbf{E}}{\partial t} \quad (2)$$

$$\nabla \cdot \mathbf{D} = \rho \quad (3)$$

$$\nabla \cdot \mathbf{B} = 0 \quad (4)$$

After every step of equating, we get these equations:

$$\mathbf{E} = \sqrt{\frac{120\pi P_T G_T}{4\pi d^2}} \quad (5)$$

In terms of distance d,

A three dimensional item has length, level, and profundity. Instances of 3D items are cones, circles, and crystals.

$$d = \sqrt{\frac{30P_T G_T}{E}} \quad (6)$$

Penetration Depth of Electromagnetic Energy

- $EP = E \exp(-dp/\delta)$
- dp -penetration depth
- δ skin depth demonstrating the distance EM wave should infiltrate a surface 1/e-strength level falloffs factor.

$$\delta = \omega \left\{ \frac{\mu \epsilon}{2} \left[1 + \frac{\sigma^2}{\epsilon^2 \omega^2} \right]^{1/2} - 1 \right\}^{1/2} \quad (7)$$

- In the wave regime wherein $\omega \epsilon \gg \sigma$, δ can be probable $1/\rho$, as

$$\delta = \frac{2}{\sigma} \sqrt{\frac{\epsilon}{\sigma}} = 0.00503 \frac{\sqrt{\epsilon_r}}{\sigma} \quad (8)$$

Specific Absorption

Rate

$$SAR = \frac{d}{dt} \left(\frac{dW_e}{dm} \right) = \frac{d}{dt} \left(\frac{dW_e}{\rho dV} \right) \quad (9)$$

dm ---> incremental mass ρ > mass density

$dWe \rightarrow$ incremental energy $dV \rightarrow$ volume element

The SAR worth can be determined from electric strength, ρ mass density, and conductivity of tissue, σ :

$$SAR = \sigma E^2 / \rho \quad (10)$$

The SAR is interrelated to the current density J in

tissue by:

$$J = (\sigma \rho SAR)^{1/2} \quad (11)$$

IV. RESULTS & DISCUSSION

The FDTD model for EM waves in different dimensions theoretical analysis is done. The results is the 1-D, 2-D, 3-D FDTD models of EM analysis as we got.

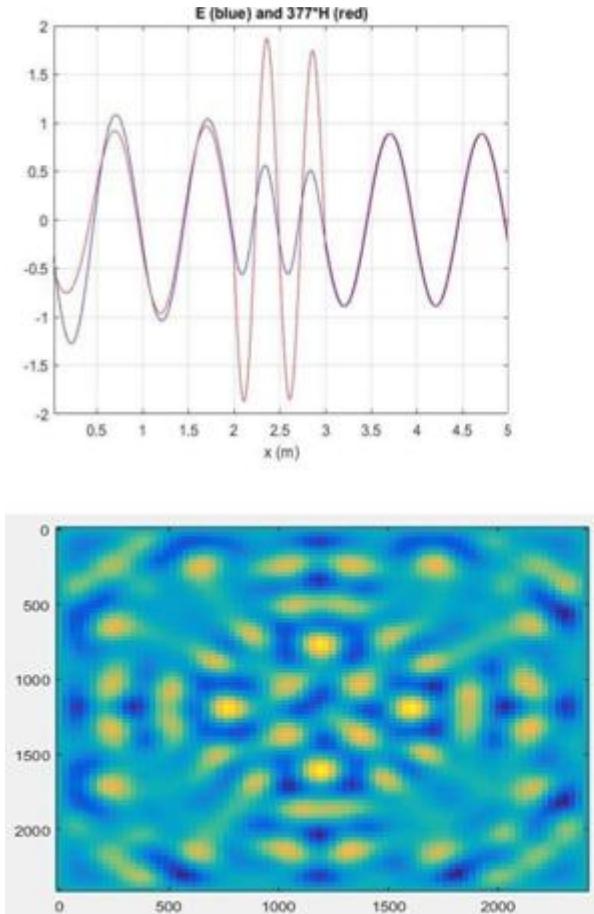
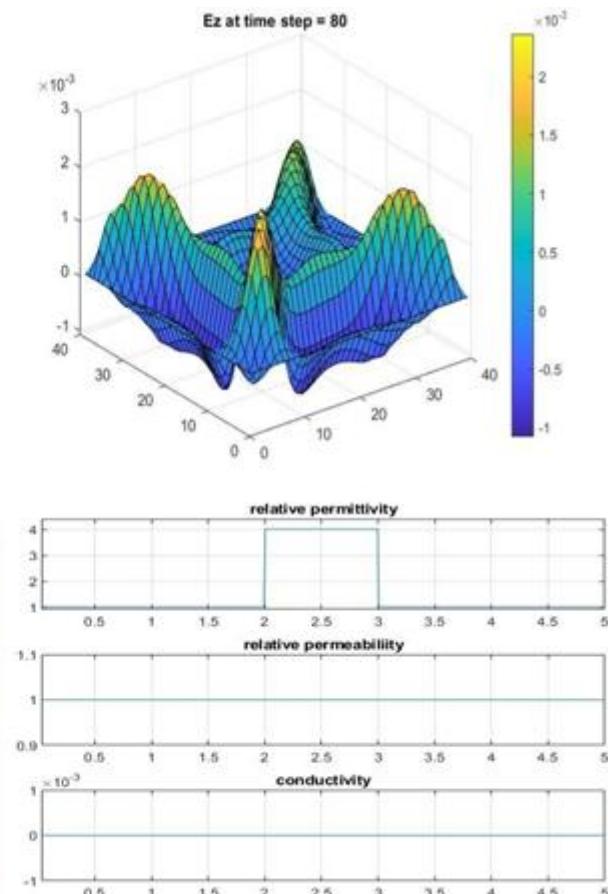



Fig. 4. 1 (a, b) Response of 1-FDTD Model and 3- FDTD Model Figure 4. 1 (c,d) Response of 2-FDTD Model and Relative Permittivity, Permeability with Conductivity

A. SAR Response with respect to distance from Mobile base station

The plots infer that the SAR upsides of the organic organs nearer to the body surface are higher than ones from the surface. By and large, it is normal that the nearer a tissue is to the communicating radio wire, the

more uncover the tissue is to the antenna's transmitted electromagnetic energy and the higher the SAR values. This additionally suggests that the entrance profundity of electromagnetic energy into the tissues diminishes with expanding distance from base station recieving antenna.

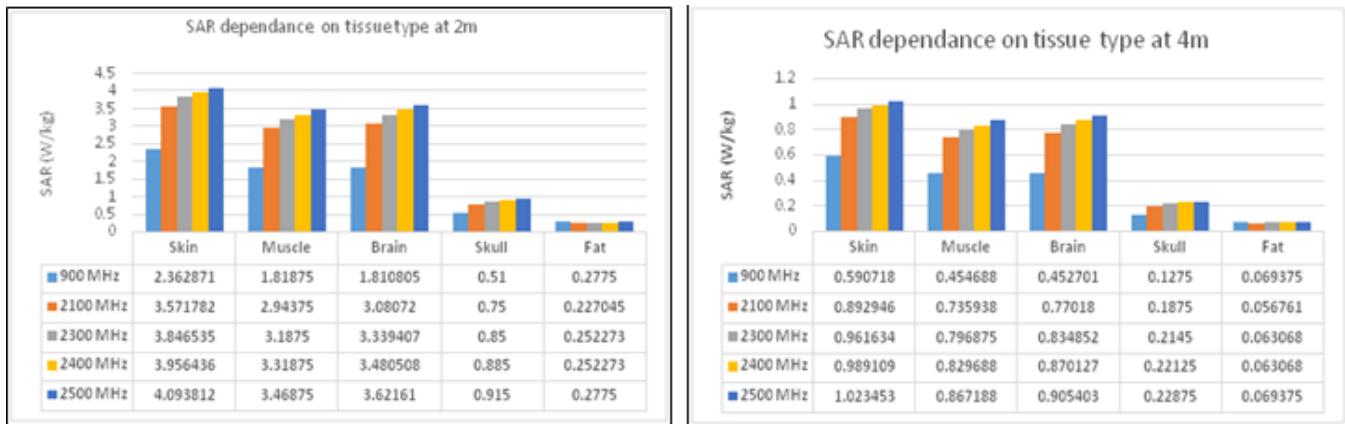


Fig. 4.2 (a, b) SAR dependence on biological tissue type at 2m and 4m calculation distance

The base station working frequencies reliance of the SAR upsides of organic human tissue are plotted in Figure 4.3 (a,b) at 2, 4m computation distances. In like manner, the biggest SAR esteem is achieved at

2500MHz and the least at esteem at 900MHz. This is a result of predominant family member permittivity at higher recurrence, in this manner prompting expansion in the SAR values.

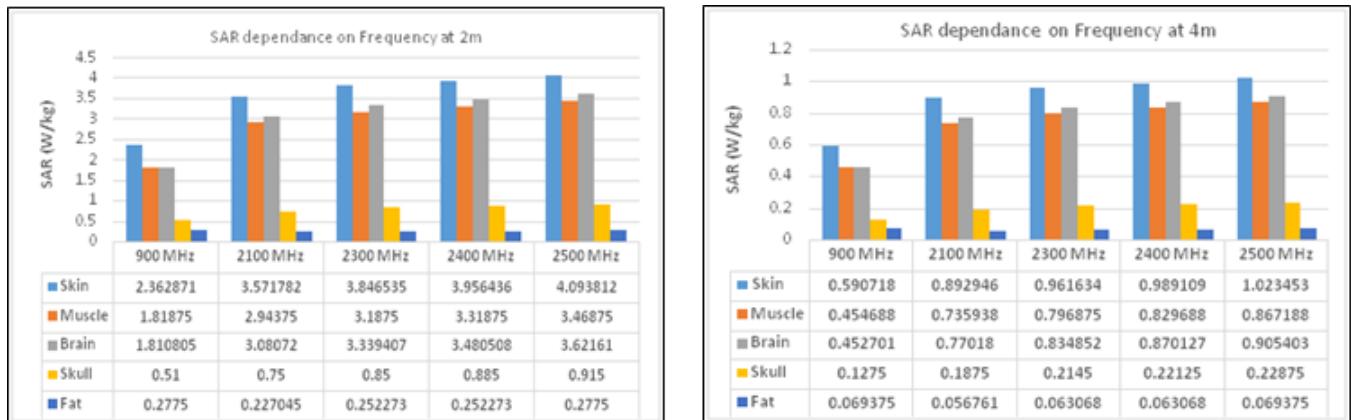


Fig. 4.3 (a, b) SAR dependence on Antenna Frequency at 4m calculation distance

B. Induced Current in organic tissues

The ongoing thickness values reliance on tissue type and base station working frequencies are plotted in Figure 4.4 (a,b) at 2, and 4m computation distances, separately. The noteworthy current thickness values in Figure 4.4 (a,b) are gotten for the muscle, skin and

cerebrum tissues, attributable to their higher water items and dielectric properties. The plots infer that the sum current thickness incites into the organic tissues ate attached to their water items and dielectric properties.

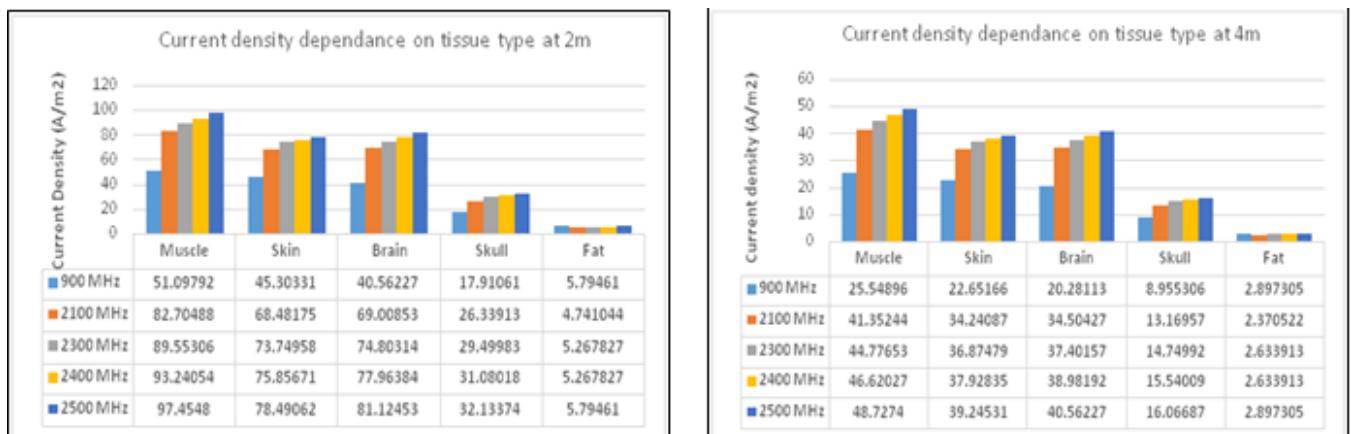


Fig. 4.4 (a, b) Current density dependence on tissue type at 2m and 4m calculation distance

V. CONCLUSION

The work presents improved on scientific displaying of the connection between organic human tissues and brilliant electromagnetic fields because of base station radio wires. As far as prompted current thickness and SAR levels, the outcomes got through the worked on scientific models has been quantitatively processed, introduced and examined. The outcomes uncover that the particular pace of assimilation and initiated flow thickness are unequivocally reliant of the radio frequency, direction and force of the episode electromagnetic fields, tissue type and its constituent dielectric properties (relative permittivity and conductivity).

REFERENCE

- [1] Harmful effects of electromagnetic waves on blood tissues of the human body Author Vijay Kumar, Mushtaq Ahmed and A. K. Sharma(dept of physics, graphic era university, Dehradun India).
- [2] World Health Organization (WHO) 2011 International Agency for Research on Cancer. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans, Press release N° 208.
- [3] Abdullah H. H., El-Hefnawi F. M., Elsherbeni, A. Z., "An FDTD Scattered Field Formulation for Dispersive Media," Antennas and Propagation Society International Symposium, 2000; 1: 248 – 251, SaltLake City, UT.
- [4] Akimasa Hirata, Sachiko Kodera, Kensuke Sasaki, José Gomez tames,Ilkka Laakso, Andrew wood,Soichi Watanabe, and Kenneth R Foster--Human exposure to radiofrequency energy above 6 GHz: a review of computational dosimetry studies
- [5] Verma, S., Tejaswini, T. M., & Pradhan, D. (2019). Harmful effects of 5G radiations: Review. In *IRAJ international conference* (pp. 71-75).
- [6] Tun, H. M., Win, K. K. K., Naing, Z. M., Pradhan, D., & Sahu, P. K. (2021). Measurement Analysis of Specific Absorption Rate in Human Body Exposed to a Base Station Antenna by Using Finite Difference Time Domain Techniques. *Semiconductor Science and Information Devices*, 3(2).
- [7] Oo, W. M., Tun, H. M., Nway, T. M., Pradhan, D., Sahu, P. K., & Naing, Z. M. (2022, January). Design, Analysis and Fabrication of Dual Band Microstrip Patch Antenna for (L2) Band GPS and WiFi Applications. In *2022 International Conference for Advancement in Technology (ICONAT)* (pp. 1-5). IEEE.
- [8] Pradeep R Pawar, Prajwal Patil, Praneeth P Jain, Manoranjan K V, Devasis Pradhan (2020) 'Performance Analysis of Energy Detection Method in Spectrum Sensing Using Static & Variable Threshold Level for 3G/4G/VoLTE', *Saudi Journal of Engineering and Technology* ISSN 2415-6272 (Print) |ISSN 2415-6264 (Online), 5(4), pp. 173-178 DOI: 10.36348/sjet.2020.v05i04.007
- [9] Prathviraj Khande, Yogesh K. B, Manu M. M, Ravikiran G. N, Devasis Pradhan (2021) 'An overview of Algorithms for Adaptive Beam Forming (ABF) for Smart Antenna System (SAS)', *South Asian Research Journal of Engineering and Technology* ISSN 2664-4150 (Print) & ISSN 2664-794X (Online) , 3(1), pp. 23-30 DOI: 10.36346/sarjet.2021.v03i01.004
- [10] H. M. Tun, Z. T. Thu Lin, D. Pradhan and P. K. Sahu,(2021) "Slotted Design of Rectangular Single / Dual Feed Planar Microstrip Patch Antenna for SISO and MIMO System," *IEEE 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET)*, 2021, Cape Town, South Africa pp. 1-6, doi: 10.1109/ICECET52533.2021.9698738
- [11] Devasis Pradhan, A Dash (2020) 'An Overview of Beam Forming Techniques Toward the High Data Rate Accessible for 5G Networks', *International Journal of Electrical, Electronics and Data Communication*, ISSN(p): 2320-2084, ISSN(e): 2321-2950 , 8(12), pp. 1-5
- [12] Bornkessel C, Schubert M, Wuschek M, Schmidt P. Determination of the general public exposure around GSM and UMTS base stations. *Radiat Prot Dosimetry* (124):40-47; 2007.
- [13] Subhash Chander Verma , Tejaswini T M, Devasis Pradhan (2019) 'Harmful Effects of 5G Radiations: Review', *International Journal of Industrial Electronics and Electrical Engineering*, ISSN(p): 2347-6982, ISSN(e): 2349-204X , 7(3), pp. 59-63
- [14] Bhargav, H. Srinivasan, T.Varambally, S., "Effect of Mobile Phone-Induced Electromagnetic Field on Brain Hemodynamics and Human Stem Cell Functioning: Possible Mechanistic Link to Cancer Risk and Early Diagnostic Value of Electron photonic Imaging" Jan.2019.
- [15] Rani MU, Baba VSSNS, Gundala S. (2018). Analysis of SAR in Human Blood, Bones and Muscles due to Mobile Waves at 900MHz, 1800MHz and 2400MHz. *Int. J. Appl. Eng. Res.* 13, 5, 2125–2129.