
EmpowerSoC: An Open-Source Power Analysis

Engine based on Qflow

Akshat Jain

Department of Electronics and Communication Engineering

Netaji Subhas University of Technology

Delhi, India

 jakshat2312@gmail.com

Naveen Dugar

Department of Electronics and Communication Engineering

Netaji Subhas University of Technology

Delhi, India

 naveen.dugar1010@gmail.com

Sagar Yadav

Department of Electronics and Communication Engineering

Netaji Subhas University of Technology

Delhi, India

 13sagaryadav@gmail.com

Kunwar Singh

Department of Electronics and Communication Engineering

 Netaji Subhas University of Technology

Delhi, India

 kunwar.singh@nsut.ac.in

Abstract—The paper introduces EmpowerSoC which is an

open-source power analysis engine based on the Qflow tool chain.

Both active and standby power consumption can be estimated

using this tool. Qflow is used to run the RTL to GDSII flow a

target design and is a silicon proven flow [1]. Power estimation

in EmpowerSoC is done by extracting transistor-level post-layout

netlists for various building blocks/cells on an automated basis.

It has a user-friendly GUI through which users can set input

bit patterns and other simulation parameters. It has been tested

on various digital blocks and the obtained results have been

presented.

Index Terms—EmpowerSoC, Open-Source, Qflow, Power

Analysis Engine, EDA

I. INTRODUCTION

Power analysis is an important consideration while design-
ing an SoC. Manual estimation of power dissipation for Very
Large Scale Integrated (VLSI) Circuits is far beyond human
ability because of their complexity. Therefore, in order to
analyze power in these circuits one has to use professional
computer-aided tools. Most of such tools are proprietary which
makes them less accessible to the vast majority of students.
EmpowerSoC is a Qflow based power analysis engine that is
built to fulfill the same purpose. The proprietary software has
to maintain cutting-edge performance, which justifies their
cost. EmpowerSoC on the other hand provides an open-source
alternative that can be used by students and independent
researchers to estimate power consumption for building blocks
of an system on chip (SoC).

Power dissipation is the major driving force behind the
development of the EmpowerSoC tool. With the advent of
transistors, the number of transistors being used to fabricate
SoCs has been exponentially increasing. With such a huge
increase in the number of transistors on chip , power
dissipation is very high and represents a critical challenge. The
increasing use of an SoC is compelling the designers to
increase its functionality and at the same time reduce the power
consumption. As the circuit becomes more complex, the power

calculation becomes increasingly difficult and tiresome for the
designers. Nowadays, power dissipation has become a major
design entity that is kept in mind before designing and
fabricating a circuit. Keeping a check on power dissipation
becomes even more important owing to the rise in the number
of portable electronic devices. Using the EmpowerSoC tool,
one can estimate the power consumption of the digital blocks
and comment on the feasibility of the design early in the design
cycle.

The Qflow tool chain consists of various open-source tools
namely Yosys[2], Graywolf, Qrouter[3],
Opentimer/OpenSTA[4], and Magic[5]. One can extract
information about area and timing/performance for a design
from these tools but it lacks a power analysis engine. With
EmpowerSoC we have tried to bridge this gap so that open-
source designers have the option to predict the power
consumption of their designs along with the chip area and
performance.

Rest of the paper is organized as follows. Section II
provides a brief overview of the various types of power
dissipation encountered in CMOS technology and the
methodology used by EmpowerSoC to calculate power
consumption. This is followed by a description of the tool flow
in Section III. The methodology used for power estimation is
then applied on various RTL designs and presented in section
IV. Finally, conclusion and future work is summarized in
Section V.

II. POWER CONSUMPTION

This section talks briefly about the various sources of power
dissipation in CMOS circuits as well as the methodology used
by EmpowerSoC for power estimation. Power dissipation in
CMOS circuits can be thought of as consisting of two compo-
nents: dynamic power dissipation and static power dissipation.
Dynamic power dissipation is is considered when the circuit is
in active state. It consists of switching power dissipation, short
circuit power sissipation, and glitching power dissipation

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue II

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

31

mailto:jakshat2312@gmail.com
mailto:naveen.dugar1010@gmail.com
mailto:naveen.dugar1010@gmail.com
mailto:13sagaryadav@gmail.com
mailto:13sagaryadav@gmail.com
mailto:kunwar.singh@nsut.ac.in
mailto:kunwar.singh@nsut.ac.in

Fig. 1. EmpowerSoC Flow

Switching power dissipation consists of the power that is
dissipated in the parasitic capacitors and resistors while
charging and discharging. Short circuit Power dissipation
consists of the power that is dissipated during switching when
a path exists from VDD to Ground for current to flow.
Glitching power dissipation occurs when the input signals to a
particular logic block reach the inputs of a gate at different
times resulting in glitches. Static power dissipation mainly
consists of the power dissipated due to leakage current. Static
power dissipation is a constant factor in CMOS circuits and is
not dependent on switching i.e. it mainly occurs when the
transistor is off. Below 90nm technology, it has become an
important contributor to power dissipation. The main causes of
static power dissipation are sub-threshold leakage, gate
leakage, reverse-biased current, and junction leakage [6].

Another way of thinking about power consumption in
CMOS circuits is through modes of operation, namely active
mode and standby mode. Active power is the power consumed
while the chip is active, the inputs and outputs are changing,
and is doing useful work. It mainly consists of the switching
power. Whereas, standby power is the power consumed when
the device is in sleep mode or when the input and output nodes
are stable and no useful work is being done. This is mainly
dominated by leakage power. EmpowerSoC can be used for
estimating both active and standby power consumption.

EmpowerSoC first calculates the total charge supplied to
the design by integrating the instantaneous current drawn from
the supply voltage over the simulation time frame. This total
charge is then used to calculate the average energy supplied by
taking its product with the supply voltage. Finally, this average
energy supplied is used to obtain the value of average power
consumption. During active mode, the input pin voltages are
allowed to change through controlled pulses whose properties
can be defined by the user. Whereas, in standby mode input pin
voltages are held constant to keep the device in sleep mode.

III. TOOL FLOW

This section provides a brief introduction to the Empow-
erSoC tool flow. Figure 1 illustrates the basic tool flow. The
entire tool flow can be divided into three steps. Below is a
summarized breakdown of the three stages.

A. Run RTL to GDSII flow using Qflow.

The first step is to run the RTL to GDSII flow using the
Qflow tool chain. This digital synthesis flow takes as input a
Verilog description of a circuit design and creates its physical
implementation(layout) for a particular fabrication technology.
The very capable open-source synthesis tool Yosys is being
used to carry out the front-end synthesis. Synthesis includes
mapping a logic circuit to a standard cell library. Here, the Ok-
lahoma State University’s open-source standard cell library is
being used[7]. The circuit description in .blif format (Berkeley
Logic Interchange Format) is also obtained after synthesis. The
BLIF file is used to convert any digital circuit in text format, as
any digital circuit can be visualized as a directed graph of
combinational and sequential logic nodes. EmpowerSoC uses
this to get useful information about the module. The next step
in the flow is placement. Yale university’s Graywolf tool takes
care of placement. It is used for placing and assigning locations
to various circuit subsystems within the chip. After placement
comes routing, which is done by Qrouter. This step is essential
for determining the detailed wiring between the placed
subsystems within the chip. Opentimer or OpenSTA can be
used for performing the static timing analysis (STA). The
popular and easy-to-use MAGIC tool written by John
Ousterhout is the open-source VLSI layout tool that is being
used. It can perform design rule checks (DRC) and parasitic
extraction. After verification, MAGIC can convert the data into
the industry standard GDSII format. It must be noted that
Qflow might not be suitable for carrying out the physical
synthesis for the new generation complex microprocessors, but
it is very well capable of creating the digital subsystems used
in various chips.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue II

32

B. Obtain transistor-level netlists for the sub-cells

The next step after running Qflow is to obtain transistor-
level netlists for the sub-cells to eventually create the spice
netlist for the complete circuit. After placement and routing,
the layout is obtained in DEF file format. Migration step is
done to convert this DEF view of the layout into a MAGIC lay-
out database. This MAGIC database is loaded into the magic
tool using a Tcl script. Then the Magic circuit extractor is
invoked to extract the main cell and all sub-cells. This extrac-
tion computes information about the lumped node resistance,
lengths, and widths of the transistors as well as information
about the other parasitics involved, all of which is needed for
carrying out the simulation. Various kinds of inter-nodal
parasitic capacitances, as well as substrate capacitances, are
computed during this process. This step ensures that our power
estimation includes the parasitics component. After extraction,
the .ext files for all the sub-components are obtained. Next, this
extracted information in the form of .ext files is converted into
spice files for the subcomponents using the ext2spice package
in MAGIC. These Spice files are essential for carrying out the
simulation in the final step. Once the spice definitions for all
the subcells are extracted, the spice netlist for the complete cell
can be created.

C. Calculate power consumption as per user-defined simula-

tion constraints

After including the sub-circuit definitions and transistor-
level netlist in a spice file, the complete spice netlist for target
module was obtained. The next step is to include the model
parameters for the transistors. EmpowerSoC’s user-friendly
GUI gives the user freedom to specify the simulation
parameters based on their requirement. The user has the
flexibility to use their own technology or use the default TSMC
180nm technology parameters provided with the tool. After
specifying the technology, the input bit patterns specified by
the user are used to add input pin excitations in the form of
spice commands to the main netlist. Users can specify the
excitations for the input pins in the form of controlled voltage
pulses, or constant voltage signals. Thereafter, any external
load capacitance as specified by the user are included in the
main netlist. Finally, the relevant power calculation equations
in the form of spice commands are included in the main netlist
and the simulation is run in a circuit simulator like Ngspice[8]
for the specified simulation period to calculate the power
consumption. Both the active power consumption as well as
standby power consumption can be calculated by selecting
appropriate options in the GUI.

Fig. 2. ALU Layout

Fig. 3. EmpowerSoC GUI

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue II

33

TABLE I. ACTIVE AND STANDBY POWER CONSUMPTION VALUES FOR VARIOUS MODULES

Module Type Gate Count Active Power Consumption Standby Power Consumption

Average Energy(fJ) Average Power(µW) Average Energy(fJ) Average Power(µW)

Inverter 2 1.908 × 102 5.490 × 103 6.779 × 10
−3 3.389 × 10

−4

3-bit Up-counter 15 6.253 × 105 3.126 × 104 1.125 × 10
−1 5.625 × 10

−3

LFSR 76 1.519 × 106 7.593 × 104 5.699 × 10
−1 2.849 × 10

−2

Booth Multiplier 205 2.113 × 106 1.057 × 105 1.083 5.413 × 10
−3

Jtag 212 1.809 × 106 9.048 × 104 1.559 × 104 7.798 × 102

8 bit ALU 855 2.096 × 106 6.551 × 104 4.721 2.360 × 10
−1

16x16 RAM 1091 6.846 × 106 3.423 × 105 1.118 × 101 5.592 × 10
−1

IV. RESULTS

EmpowerSoC was tested for an 8 bit Arithmetic Logic Unit
(ALU) comprising of 855 logic gates and capable of
performing 16 possible operations. The RTL description of the
ALU was written in Verilog which was then used to run RTL
to GDSII flow using Qflow. Fig. 2 shows the obtained layout.
Next, EmpowerSoC was invoked which utilized Magic for
extracting the parasitics from the layout, creating the final
transistor level netlist from the extracted sub-circuits, and
finally running the simulation in Ngspice as per the defined
constraints. Using EmpowerSoC’s GUI (Fig. 3) in active
power mode, the ALU was made to perform all the 16 possible
operations in a sequential manner for constant operands. This
ensured the average active power consumption which was
calculated accounted for all the possible use cases. Similarly,
using the GUI in standby mode, the ALU was operated in sleep
state by keeping the input data pins and select line voltages
constant thereby performing no operations. This leads to
estimation of average standby power consumption.

In addition to the 8-bit ALU, the tool has been used to

calculate active and standby power consumption for various

other modules like Joint Test Action Group (JTAG), 32 Byte

Random Access Memory, Linear Feedback shift Register

(LFSR), and Booth’s multiplier with logic gates count up to

1091. Table I shows all the obtained values for gate counts,

average energy consumed in femto Joules, and average power

consumed in micro Watts for both active and standby modes.

V. CONCLUSION AND FUTURE WORK

This paper introduces EmpowerSoc which is an open
source power analysis engine based on the Qflow toolchain.
Power estimation is done by extracting transistor-level post-
layout netlist for building blocks on an automated basis. The
flow is technology independent and the user has the flexibility
to select their own technology parameters. Also, the tool can be
used to calculate both active and standby power consumption.
The tool is user-friendly and is backed by comprehensive
documentation that will enable beginners to use the tool easily.
Future work includes improving the user interface of the tool
so that it becomes more interactive such that users with
different degrees of knowledge can adapt to the tool and use it
effectively. Also, the tool at present only supports digital
circuits. The power estimation of mixed-signal circuits would
be soon inculcated in the tool so that many more designs can
be supported. Furthermore, in future we wish to expand

EmpowerSoC to support OpenLane[10] tool chain based
designs in addition to Qflow.

REFERENCES

[1] Qflow : Digital Synthesis Flow. http://opencircuitdesign.com/qflow/

[2] Yosys Open Synthesis Suite. http://bygone.clairexen.net/yosys/

[3] Qrouter. http://opencircuitdesign.com/qrouter/

[4] OpenSTA : Timing Analysis Tool. https://github.com/The-OpenROAD-
Project/OpenSTA

[5] Magic : VLSI Layout Tool. http://opencircuitdesign.com/magic/

[6] Weste, N. H. E., Harris, D. M.,Weste, N. H. E. (2005). CMOS VLSI
design: A circuits and systems perspective. Boston: Pearson/Addison-
Wesley.

[7] OSU Standard Cell Library. https://vlsiarch.ecen.okstate.edu/flows/

[8] Ngspice - Open Source Spice Simulator. http://ngspice.sourceforge.net

[9] JTAG Test Access Port. http://www.opencores.org/projects/jtag/

[10] OpenLane : RTL to GDSII Flow. https://github.com/The-OpenROAD-
Project/OpenLane

[11] D. Shah, E. Hung, C. Wolf, S. Bazanski, D. Gisselquist and M.
Milanovic, ”Yosys+nextpnr: An Open Source Framework from Verilog
to Bitstream for Commercial FPGAs,” 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2019, pp. 1-4.

[12] T. -W. Huang and M. D. F. Wong, ”OpenTimer: A high-performance
timing analysis tool,” 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2015, pp. 895-902.

[13] T. -W. Huang, C. -X. Lin, G. Guo and M. D. F. Wong, ”INVITED:
Essential Building Blocks for Creating an Open-source EDA Project,”
2019 56th ACM/IEEE Design Automation Conference (DAC), 2019,
pp. 1-4.

[14] M. Chupilko, A. Kamkin and S. Smolov, ”Survey of Open-source Flows
for Digital Hardware Design,” 2021 Ivannikov Memorial Workshop
(IVMEM), 2021, pp. 11-16.

[15] Wolf, Clifford, Johann Glaser and Johannes Kepler. “Yosys-A Free
Verilog Synthesis Suite.” (2013).

[16] O. G. Berkes and R. W. Williams, ”Magic as a PC layout tool for small
budget VLSI circuit design,” in IEEE Transactions on Education, vol.
34, no. 1, pp. 52-55, Feb. 1991.

[17] H. Martin and R. Ram, ”A CAD tool for circuit diagram extraction from
VLSI layout cells,” Proceedings of the 32nd Midwest Symposium on
Circuits and Systems,, 1989, pp. 817-820 vol.2.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue II

34

http://opencircuitdesign.com/qflow/
http://bygone.clairexen.net/yosys/
http://opencircuitdesign.com/qrouter/
http://opencircuitdesign.com/magic/
http://ngspice.sourceforge.net/
http://www.opencores.org/projects/jtag/

