

Bucket Filling Algorithm

Nafim Ahmed

Computer Science and Engineering
Daffodil International University
Dhaka, Bangladesh
recentnafimahmed@gmail.com

Mohammad Naveed Hossain

Computer Science and Engineering
BRAC University
Dhaka, Bangladesh
naveedhossain99@gmail.com

Abstract—This research is about a bucket filling algorithm. Bucket filling algorithms are very important in our life. We use these algorithms for storing technology. There are some kind of bucket filling algorithms. But these algorithms have some problems. To solve the problems we have proposed this algorithm. In this algorithm we tried to split this bucket into some packet. And we have tried to fulfil the individual packets and by fulfilling the packet, we can fill the bucket. In this algorithm, the minimum size of the packet should be the maximum size of the entity. By this, we can easily and efficiently can fill the buckets.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

The term "bucket filling" is often used to describe the effects of a person's upbeat demeanor and charitable actions. Filling a bucket is a common metaphor used to teach kids about their emotions. The core idea is that everyone possesses an invisible bucket that, when full, causes feelings of happiness, confidence, security, calmness, and satisfaction. However, if a person is lugging about an empty bucket, it's an indication that they're troubled, depressed, dissatisfied, and unhappy. The idea is to help people develop a habit of monitoring their emotional well-being by keeping track of the level of water in a metaphorical bucket. A "bucket filler" is someone whose actions make another person's life easier. Filling other people's buckets with our kindness, empathy, and compassion allows us to share in their sense of well-being. The notion of "bucket filling" is built on the premise that when people of all ages are able to verbally express their emotions and gain insight into how their actions affect others around them, they are better able to manage their own feelings and those of others.

Once kids have a firm grasp on the idea, you may work with them to consider the impact of their words and deeds on the emotional well-being of others around them. It's crucial to instill in early children an appreciation for selfless giving and the "Bucket Filling" notion. The books in the Bucket Filling series teach children how to provide a positive learning environment for their peers by emphasizing the importance of sharing, being respectful, and working together. Schools already promote these ideas, but we want to further emphasize their importance by using a charming and amusing approach. The importance of keeping a full bucket is communicated via straightforward images and text.


II. LITERATURE REVIEW

Autonomous bucket-filling algorithms are vital for front-end loaders in construction, mining, and quarrying. Autonomous bucket-filling has been a challenge for three decades because of the difficulty of constructing effective earth models (soil, gravel, and rock). Operators employ visual, auditory, and vestibular cues to fill buckets. This paper shows field tests using a modest time-delayed neural network (TDNN) installed inside a Volvo L180H front-end loader's bucket control-loop. Due to the wheel-hydraulics' changing delay, the TDNN's total delay time parameter is a key hyperparameter. After 100 instances from a human expert, the TDNN network can fill buckets on its own. The demonstrated method fills a bucket 26% faster than hand tele-operation. [1]

Construction, mining, and quarrying require automatic bucket-filling algorithms for front-end loaders. Autonomous bucket-filling is a 30-year-old problem due to difficulty establishing suitable earth models (soil, gravel, rock) for automatic control. Operators use vision, hearing, and vestibular feedback to fill buckets efficiently. This study presents field trials with a small time-delayed neural network (TDNN) installed in the Volvo L180H front-end loader's bucket control-loop. The changeable delay in the wheel-hydraulics loader's makes the TDNN's total delay time parameter a significant hyperparameter. After 100 cases of imitation learning from an expert, the TDNN network fills buckets correctly. The presented approach is 26% faster than manual tele-operation. [1]

Wheel loaders engage the ground or other material. The bucket filling phase must be included when investigating optimal machine control across a whole working cycle since it affects machine productivity and efficiency. This paper describes how to use Discrete Element Method simulations in combination with Ideal Control to identify the optimal bucket filling method and what has been learned about planning and executing simulations and physical testing for verification. This research also reveals which bucket filling approach seems ideal based on findings thus far — and why we can't be sure. [2]

The bucket fill factor optimizes the loader's autonomous shoveling action. Predicting the loader's bucket fill factor after varied excavation trajectories optimizes its efficiency and energy cost. This research provides a method for forecasting the loader's bucket fill factor based on three-dimensional

surface data. First, a co-simulation model of a loader shoveling material is created using the multi-body dynamics program RecurDyn and the discrete element method software (DEMS) EDEM. The three-dimensional material surface information before shovel excavation is received from DEMS, and the material contour surface function is fitted based on shovel excavation trajectory information. By numerically integrating the material dug by the loader, the bucket fill factor may be determined. The bucket fill factor is calculated by dividing the actual shovel excavation volume by the rated bucket volume. This informs the bucket fill factor prediction model. The proposed technique has a maximum error of 4.3%, a root mean square error of 0.025, and an average absolute error of 0.021. The research establishes the groundwork for estimating the bucket fill factor of loaders and excavators under real working conditions, which promotes the development of autonomous, unmanned, and intelligent construction machines. [3]

Fully automated wheel loader systems rely on automatic bucket-filling. Most earlier studies are built on a physical model that can't adapt to a complex working environment. This research proposes a data-driven reinforcement learning (RL)-based technique to autonomous bucket-filling. A Q-learning-based automatic bucketfilling algorithm improves the autonomous scooping system's adaptability. Using test data, a nonlinear, non-parametric statistical model is created to simulate the real working environment. The model predicts wheel loader bucket-filling states. On the prediction model, the proposed algorithm is trained. The training results support the proposed algorithm's good flexibility, convergence, and fuel consumption without a physical model. The results show the approach's transferability. The proposed approach works in machine-pile situations. [4]

III. METHODOLOGY

In this research we want to propose a new method which will give the solution by using the packet feeling concept. In this method we will divide a bucket into the smallest size of packets and the packet size should be equal to the largest size of element. So in this method at first we will fill up the packets properly then the packet will fill the bucket. After feeling all the packet, if we have more space in a bucket, we can also consider the existing place as a packet. So by using this method we can reduce the wastage of places and we can make proper use of our place in stores and transport.

IV. PROPOSED ALGORITHM

In this algorithm each bucket will divide into some packets. Each packet size will be equal to the highest sized element. Before the process, all the elements will be sorted in ascending or descending order. The elements will fill the packets and the packets will fill the bucket. At last, if any bucket has free space, then the whole free space will be a packet. The free space of different buckets will be each individual packet.

V. FLOW CHART

Each bucket in this method will be subdivided into a number of smaller packets. The largest component size will determine

the size of each packet. Every component will be arranged by size or value before the operation begins. Once the packets are full, the elements will fill the bucket. Finally, all unused space in any given bucket will be represented by a single packet. Each datagram will represent the empty space in one of many containers.

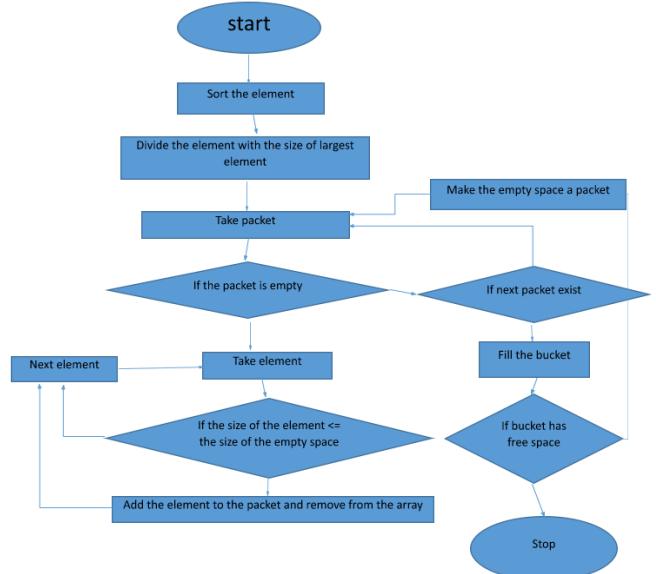


Fig. 1. Flowchart of Proposed Model

VI. RESULT AND ANALYSIS

The temporal complexity of Bucket Sort depends heavily on the size of the bucket list and the distribution of the arrays or element lists.

Complexity Best Case O (n) It happens when the components are spread out evenly in the buckets, such that each bucket has approximately the same things. This problem becomes more difficult when the contents of the buckets are already sorted. In general, the complexity is linear, or O(n+k), if insertion sort is employed to sort the components in the bucket. The difficulty of making buckets is O(n), while the complexity of sorting the items of buckets is O(k), assuming linear-time complexity techniques. Complexity Level O, On Average (n) It occurs whenever there is a random order to the array's items. If the components aren't evenly dispersed, bucket sorting still takes the same amount of time as if they were. It's valid up to the point when the entire number of items may be represented linearly by adding the squares of the bucket sizes. Complexity at worst O(n²) Clustering occurs when array members are adjacent to one another. Consequently, the number of items included in each container may vary. To put it another way, the complexity now relies on the specific sorting algorithm used to arrange the items in the bucket. The intricacy is much higher when the pieces are

switched around. To reduce the temporal complexity, we may utilize insertion sort to order the components in the bucket (n2).

VII. CONCLUSION

In this research, we provide a methodology for determining the optimal placement of caches inside a cellular network so as to maximize the efficiency with which user traffic is distributed throughout the various cache-equipped base stations. As the answer to an optimization challenge, we generated a strategy to pair up users with base stations. The solution's key innovation consists in its use of the Augmented Lagrangian to solve a strictly concave issue and in its introduction of the Bucket-filling algorithm, which calculates the best routing per station. The policy effectively divides the listeners among the many channels. A distributed method may be used to do this, allowing routing choices to be made locally at the stations with little data exchange. Because of the algorithm's efficacy, even massive networks with widely varying coverage regions and cache sizes may be efficiently addressed. We found that our policy is more effective at distributing user traffic evenly between stations than the more traditional user traffic association rules via simulations of both single- and multi-tiered networks.

REFERENCES

- [1] Siddharth Dadhich, Fredrik Sandin, Ulf Bodin, Ulf Andersson, Torbjörn Martinsson, Field test of neural-network based automatic bucket-filling algorithm for wheel-loaders, Automation in Construction, Volume 97, 2019, Pages 1-12, ISSN 926-5805, <https://doi.org/10.1016/j.autcon.2018.10.013>.
- [2] R. Fillal and B. Frank, Volvo Construction Equipment, Emerging Technologies, 631 85 Eskilstuna, Sweden 2Lund University, Faculty of Engineering, 221 00 Lund, Sweden
- [3] Jun, G.; Daqing, Z.; Yong, G.; Zhongyong, T.; Changsheng, L.; Peng, H.; Yuming, Z.; Weicai, Q.; Yongping, J. Potential energy recovery method based on alternate recovery and utilization of multiple hydraulic cylinders. Autom. Construct. 2020, 112, 103105.
- [4] Meng, Y.; Fang, H.; Liang, G.; Gu, Q.; Liu, L. Bucket Trajectory Optimization under the Automatic Scooping of LHD. Energies 2019, 12, 3919.
- [5] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [6] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.