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Abstract— Images captured under low-light conditions pose
significant challenges for subsequent analysis due to
degradation in quality, including noise, loss of scene content,
inaccurate colour, and contrast information. In this paper, we
propose a supervised learning-based convolutional neural
network (CNN) model, Nakshatra-Drishti, specifically designed
for enhancing low-light images, videos, and real-time camera
feeds. The model is trained on paired datasets and extensively
evaluated on various benchmarks, demonstrating remarkable
results. We also introduce a user-friendly web-based software
application that enhances image perception in poorly
illuminated environments, facilitating more effective artificial
intelligence analysis and decision-making processes.
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. INTRODUCTION

Low-light or poorly illuminated environments often lead
to degraded images, compromising their aesthetic quality and
impairing  viewer  experience and interpretation.
Consequently, conducting high-level computer vision
operations and artificial intelligence analyses, such as object
detection, change detection, and face recognition, becomes
exceptionally challenging. Consequently, low light image
enhancement (LLIE) techniques have emerged as a widely
recognized field of ongoing research, with continuous
developments occurring annually.

A. Background and Motivation

Algorithms ranging from histogram equalization to
retinex model-based conventional methods have been
developed to enhance low-light images [1],[2]. However,
since 2017, there has been a surge in deep learning-based
LLIE model developments, exhibiting superior accuracy,
reliability, robustness, and speed compared to traditional
methods [3],[4],[5]. These advancements have paved the way
for more resilient computer vision applications in
challenging lighting conditions.

B. Overview of Proposed Method and Testing

In this study, we introduce a novel deep learning
algorithm based on Convolutional Neural Networks (CNNs)
for low-light image enhancement. Our proposed Nakshatra-
Drishti  model effectively addresses diverse lighting
conditions, including cloudy or foggy environments, and
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images captured at night or under non-uniform lighting. This
model excels in handling high-dimensional image data and
learns hierarchical feature representations, enabling
significant enhancement in image quality. Trained on paired
image data from the LOL dataset using supervised learning,
our model has been extensively tested on various datasets
and real-world images captured by digital cameras. It
demonstrates  remarkable  performance  improvements,
including increased brightness, enhanced contrast, and noise
reduction, even in complex low-light scenarios
[61,[71.[8],[9]- Moreover, our model exhibits real-time

processing capabilities, making it suitable for practical
applications
analysis.

requiring rapid image enhancement and

Fig. 1. Images taken under sub-optimal lighting conditions

Il. LITERATURE REVIEW

A. Survey of Low Light Image Enhancement Techniques

Low-light image enhancement has been an active field of
research within the domain of image processing. Various
traditional methods have been employed, including adaptive
histogram equalization (AHE) [2], Retinex [1], and the
multiscale Retinex model [10]. Recently, in order to strike a
balance between detail and naturalness, a low-light image
enhancement algorithm was proposed for non-uniform
illumination images [11], utilizing a bi-log transformation
method. Building upon logarithmic transformation, a
weighted variational model was developed to estimate both
the reflectance and illumination from an observed image,
incorporating regularization terms [12]. Another approach to
low-light image enhancement was presented in [13], which
involved estimating the illumination of each pixel by
identifying the maximum value in its RGB channels,
followed by constructing an illumination map based on
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structural priors. Furthermore, a joint low-light image
enhancement and denoising model was introduced in [14]
through decomposition in a successive image sequence.
Additionally, in [15], a Retinex model was proposed,
integrating a noise map and comparing it with the
conventional Retinex model for low-light image
enhancement.

B. Analysis of Deep Learning Approaches in LLIE

Since 2017, the focus of low-light image enhancement
has shifted towards the development of various deep learning
models. These models can be categorized into supervised
learning, reinforcement learning, unsupervised learning,
zero-shot learning, and semi-supervised learning, depending
on the learning strategy employed. Studies have shown that
supervised learning strategies have been particularly
successful, accounting for approximately 73% of usage.
Supervised learning approaches typically involve paired
training data, where low-light images and corresponding
daylight image pairs are used for model training.

LL-Net, a stacked auto-encoder model, was introduced to
learn joint denoising and low-light enhancement on the patch
level [3]. Retinex-Net combined the Retinex theory with
deep learning, providing an end-to-end framework [4]. HDR-
Net incorporated deep learning network models with
bilateral grid processing and local affine color transforms,
along with pairwise supervision [16]. In the HDR domain,
multi-frame low-light enhancement techniques have been
developed [17], [18], [19]. A recent method proposed a
learning approach to enhance low-light images directly from
raw sensor data, focusing on avoiding amplified artifacts
[20].

CNN-based solutions, which rely on paired data for
supervised training, have been resource-intensive. LLNet, for
instance, was trained on data simulated with random Gamma
correction. Additionally, Generative Adversarial Networks
(GANs) have been developed for image synthesis,
translation, restoration, and enhancement, using paired
training data [21], [22]. Unsupervised GANSs, such as
Enlighten GAN, have been proposed for learning inter-
domain mappings without paired training data, thereby
enhancing low-light images using unpaired low/normal light
data [23]. Another approach, Zero-DCE, formulates light
enhancement as image-specific curve estimation, producing
high-order curves for pixel-wise adjustment on the dynamic
range of input images [24]. An accelerated version, Zero-
DCE++, was subsequently introduced [25].

W SUPERVISED
e
. ZERO-SHOT

LEARNING

[J RF™FORCED
. SEMI-SUPERVISED

LEARNING

PERVISED

Learming type

. SIMULATED

D LoL
. SO
. s
. M

3 1
' I |
| II

Daraset

Fig. 2. Statistic analysis of deep learning-based LLIE Techniques
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I1l. METHODOLOGY

A. Mathematical Modelling of Problem Statement
First give a common formulation of the deep learning
based LLIE problem. For a low-light image

I e Y W*H*3 of width W and height H, the process can be
modelled as:

¥=F( ¢)

where ¥ € is the enhanced result and F represents
the network with trainable parameters ¢. The purpose of
deep learning is to find optimal network parameters ¢ that
minimizes the error.

R WxHx3

g = argmin L(¥,Y),

The loss function L(¥,Y) drives the optimization of deep
learning network. The loss functions used in our Nakshatra-
Drishti model are Exposure loss, Colour constancy loss,
Spatial constancy loss, illumination smoothness loss during
training of deep learning model.
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Fig. 3. Architecture Nakshatra Drishti deep learning Model

B. Architecture Design and Components

In the Architecture Design and Components section, we
detail the structural layout and constituent elements of our
Nakshatra-Drishti  model, elucidating its  network
architecture, layers, and functional components. We
highlight how these components synergistically contribute
to the effective enhancement of low-light images.

1) Noise Filter: The denoise filter in our LLIE Model is
a vital component designed to mitigate the adverse effects of
noise commonly encountered in low-light images [28]. By
employing a median-based denoising technique, it
effectively suppresses Gaussian noise while preserving
image details and edges. Additionally, it addresses other
types of noise such as temporal noise, colour noise, and
guantization noise, ensuring overall image quality
enhancement.

2) Neighbouring Frame Utilization: Our Nakshatra-
Drishti Model leverages information from neighbouring
frames in video sequences to enhance performance and
accelerate processing speed during video and real-time
camera feed enhancement [29]. By exploiting temporal
coherence, our algorithms better estimate scene
characteristics and mitigate noise, ultimately resulting in
improved image quality. This approach optimally utilizes
computational resources, enabling real-time applications
like surveillance and medical imaging.

3) Optimizer Function: Utilizing the Adam optimizer
with a learning rate of 0.0001, our model refines parameters
and minimizes loss to enhance accuracy [30]. By iteratively
adjusting parameters based on the gradients of the loss
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function, Adam facilitates efficient convergence towards
optimal solutions. The chosen learning rate balances
exploration and exploitation, significantly improving the
quality of enhanced images, videos, and real-time camera
feeds.

4) Network Structure: Our Nakshatra-Drishti Model
employs a U-Net type network structure, integrating multi-
scale features and utilizing both low-level and high-level
features [28]. This architecture is crucial for achieving
optimized low-light enhancement by effectively integrating
feature information.

5) Data Format: Trained using RGB data input images,
our Nakshatra-Drishti Model caters to the prevalent RGB
data format produced by various cameras. This approach
ensures the recovery of clear details, vivid colour, noise
reduction, and brightness enhancement in extremely low-
light images, making it suitable for a wide range of
applications.

In  our Nakshatra-Drishti Model, utilize a
comprehensive set of loss functions:

e Exposure Loss: Adjusts image brightness by
minimizing the difference between exposure levels
of enhanced and ground truth images, enhancing
visibility in low-light conditions.

we

e Colour Constancy Loss: Maintains colour
consistency across images by penalizing deviations
from true colours, ensuring realistic colour
representation.

e  Spatial Constancy Loss: Promotes spatial coherence
and smoothness, reducing noise and blurriness for
sharper, visually pleasing results.

e lllumination Loss: Enhances overall brightness and
illumination quality, minimizing disparities between
enhanced and desired illumination levels.

e Smoothness Loss: Encourages seamless transitions
between pixels, reducing artifacts like noise and
jagged edges for clearer, visually appealing images.

IV. EXPERIMENTAL SETUP

A. Implementation and Training details

Our CNN-based Nakshatra-Drishti Model is trained
using the LOL-dataset[26], incorporating paired low-light
and over-exposed images for network training. We adopted a
novel approach by developing a GUI-based integrated image
enhancement, video enhancement, and live camera feed
enhancement software application. To achieve this, we
utilized a web-based framework created with the Flask
library in Python, leveraging Visual Studio and Python for
software development. During the execution of the deep
learning model training module, Python codes are initiated,
fetching the linked LOL-dataset. For model training, we
employed an NVIDIA 2080Ti GPU with 512GB RAM,
which completed training in approximately 40 minutes. We
set the number of epochs to 100 and utilized Adam
Optimizer with a learning rate of 0.0001 to adjust model
parameters, minimize loss, and improve accuracy.
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On a 12th Generation Intel® Core™ i3 processor CPU,
the training time for the model is approximately 5 hours.
Notably, our model demonstrates real-time processing
capabilities, achieving a processing speed of approximately
500 frames per second for images sized 640x480x3 on GPU.
The training/ work flow cycle is depicted in the
Fig.4.
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Fig. 4. Work Flow

B. Dataset Overview

For our Nakshatra-Drishti Model training, we relied on
the LOL-dataset [26], an openly accessible dataset consisting
of 500 pairs of images captured in varying lighting
conditions. These pairs were divided into 485 training pairs
and 15 testing pairs, with each image having a resolution of
400x600 pixels and being stored in RGB format. The LOL-
dataset encompasses real-world captures as well as synthetic
data, offering a diverse range of paired training datasets
tailored for low-light image enhancement networks.

C. LLIE Model Training Procedure

Our LLIE model is primarily constructed on a CNN-
based architecture, leveraging self-captured paired data from
the LOL-dataset [26]. The dataset was partitioned randomly
into 485 training pairs and 15 testing pairs, with images
resized to dimensions of 400x600 pixels. Implementation
was facilitated using TensorFlow and Keras libraries on an
NVIDIA 2080Ti GPU, with a batch size of 16 employed
during training. We initialized filter weights using a standard
zero-mean Gaussian function with a standard deviation of
0.02, while biases were initialized as constants. ADAM
optimizer with default parameters and a fixed learning rate of
0.0001 was utilized for network optimization. Activation
functions such as ReL.U and Tanh were incorporated into the
model architecture. The execution of the code and the
calculation of various parameters are illustrated in the
accompanying screenshot depicted in Fig 5.
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Fig. 5. Nakshatra-Drishti Model Training

D. Cost Function Visualisation

The integration of exposure loss, colour constancy loss,
spatial constancy loss, illumination loss, and smoothness loss
functions enhanced the model's performance, resulting in
improved image enhancement results. The fluctuations of
these loss functions over epochs are illustrated in the
accompanying charts below:

Train and Validation Lotal_loss Over Epcchs Train and Valigation lllumination_smoothness _loss Qver Epochs|
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Fig. 6. Cost Function Visualisation

V. RESULTS AND ANALYSIS

The web-based graphical user interface (GUI) of our low-
light image enhancement model offers a user-friendly
dashboard equipped with modules for image and video
viewing, as well as live camera feed access. This interface
simplifies user interaction by providing a centralized
platform for uploading images, videos, and accessing live
camera feeds, all conveniently accessible from a single
location. With just a click, users can initiate the enhancement
process, producing high-quality results effortlessly. Utilizing
a Flask-based web interface on the frontend ensures smooth
navigation between modules, delivering an intuitive and
visually appealing experience for users.
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NAKSHATRA DRISHTI: LOW LIGHT MULTIMEDIA ENHANCEMENT

Image Enhancement

Fig. 7. GUI Dashboard of Nakshatra Drishti

A. Image Enhancement Module

The low-light image enhancement module serves as a
fundamental component within our Nakshatra-Drishti model,
aimed at enhancing the visual quality of images captured
under low-light conditions. Utilizing the trained Nakshatra-
Drishti model, this module enhances brightness, contrast, and
overall clarity while mitigating noise and artifacts inherent in
low-light photography. By analyzing input images and
applying the learned weights from the deep learning model
training process, this module unveils hidden details within
shadows or darkness, thereby significantly improving image
quality.

Image Enhancement

Cove i mrg

Chome Pl N o s

Orizinal Image

Enhanced Image

Fig. 8. Results of Image Enhancement Module

B. Low-Light Video Enhancement Module

The low-light video enhancement module is an
extension of the image enhancement module, tailored to
process videos captured in low-light environments.
Leveraging the Nakshatra-Drishti model, this module
enhances the visibility and clarity of video footage, ensuring
that moving scenes captured in challenging lighting
conditions appear clear and well-defined. Through
consistent application of enhancement techniques across
each frame of the video, this module delivers smooth and
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visually appealing results, enabling users to enjoy enhanced
video playback without compromising quality or
performance.

[N

Fig. 9. Results of Low-Light Video Enhancement Module

C. Low-Light Real-Time Camera Feed Enhancement
Module

The low-light real-time camera feed enhancement
module offers real-time enhancement capabilities for live
camera feeds, facilitating improved monitoring and
visualization of scenes captured in low-light conditions. This
module processes incoming video streams from connected
cameras in real-time, applying enhancement algorithms to
enhance visibility and quality on the fly. Through dynamic
adjustment of enhancement parameters in response to
changing lighting conditions, this module ensures that live
camera feeds maintain clarity and detail, providing users
with enhanced visibility for surveillance, monitoring, or
other applications in low-light environments. Our Nakshatra-
Drishti model has undergone testing with various cameras,
including webcams, HD webcams, and I[P cameras,
demonstrating excellent results across diverse low-light
scenarios.

Camera Feed Enbancement
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Fig. 10. Results of Low-Light Real-Time Camera Feed Enhancement

V1. ANALYSIS AND INTERPRETATION

A. Software Frameworks and Tools

The project is developed using open-source and
platform-independent programming languages and software
frameworks, including  VSCodeUserSetup-x64-1.87.2,
Python version 3.10.4, Flask web framework, and HTML.
Minor configuration adjustments enable execution on
LINUX environments as well.

B. Evaluation Metrics

In addition to subjective evaluations based on human
perception, objective assessment of image quality is
conducted using Mean Squared Error (MSE) and Peak
Signal-to-Noise Ratio (PSNR). These metrics are widely
employed for Image Quality Assessment (IQA), with PSNR
representing an infinite value and MSE approaching zero
indicating superior image quality. The table below presents
the experimental results on performance metrics used to
evaluate the performance of our LLIE model on datasets,
detailed below.

TABLE I. QUANTITATIVE COMPARISONS ON LOL-TEST AND
BRIGHTENING TRAIN DATASETS IN TERMS OF MSE (x103), PSNR (IN DB)
Deep LOL-Dataset Brightening-
Learning | Learning Train
Model | MSE | PSNR | MSE | PSNR
Supervised
perv Nakshatra |, g | 1885 | 1.39 | 17.95
Learning Drishti

C. Capabilities of the Nakshatra-Drishti Deep Learning
Model

The Nakshatra-Drishti Deep Learning Model exhibits a
wide array of capabilities, enabling it to proficiently address
various tasks associated with enhancing low-light imagery.
With its advanced architecture, the model can adeptly
process low-light images, videos, and live camera feeds in
real-time. This functionality is complemented by a user-
friendly graphical user interface (GUI), which consolidates
all enhancement solutions into a single, intuitive platform.
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Users can effortlessly navigate the interface to access
different features and functionalities. Additionally, the
model provides insightful performance visualization,
presenting graphical representations of performance
parameters and metrics on a dedicated dashboard. These
metrics, including epoch details acquired during model
training and evaluation results on testing data, offer valuable
insights into the model's performance. Moreover, the
Nakshatra-Drishti model facilitates dynamic result storage,
allowing users to store and retrieve results in a database for
further analysis. Its flexibility is a notable asset,
empowering security and control room operators to tailor
model training according to their unique datasets and
specific requirements.

VII. CONCLUSION

In conclusion, our research introduces the Nakshatra-
Drishti deep learning model for enhancing low-light images,
videos, and real-time camera feeds. The model demonstrates
promising results across various datasets, surpassing existing
techniques in terms of performance metrics and benchmarks.
By integrating image, video, and live feed enhancement
within a unified framework, accompanied by a user-friendly
GUI, our approach offers a comprehensive solution to the
challenges posed by low-light conditions.

Looking ahead, our study identifies several open issues
for future exploration. Distinguishing semantic regions
within low-light images remains a critical challenge, as
existing methods often fail to consider the semantic
information of different image regions. Similarly, the
removal of unknown noises and artifacts poses significant
challenges, necessitating further research efforts in these
areas.

In summary, our work contributes to the advancement of
low-light image enhancement methodologies, paving the
way for more effective and robust solutions. By addressing
current limitations and identifying future research directions,
we aim to continually improve the quality of low-light image
and video processing, thereby benefiting a wide range of
applications and scenarios.
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