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Abstract —In the ever-changing landscape of network
security, Software-Defined Networking (SDN) is a critical
foundation that requires strong protections against cyber
threats. This research describes a novel strategy to fortifying
SDN networks by combining Deep Learning (DL) and Machine
Learning (ML) approaches. Our solution detects, analyses, and
prevents potential security breaches in real time by using Long
Short-Term Memory (LSTM) and Linear Support Vector
Machine (SVM) models, as well as PyVPN integration. Our
technology intends to improve SDN network resilience against
a variety of cyber threats, including malware, intrusions, and
denial-of-service attacks, by analysing network traffic patterns
comprehensively and proactively identifying anomalies.
Through extensive validation, we demonstrate the usefulness of
our strategy in strengthening SDN network security,
providinga robust defense mechanism against the ever-
persistent threat landscape.

Keywords—Network Security, SDN, LSTM, Linear SVM,
PyVPN, Cyber Threats, Anomaly Detection, Deep Learning,
Machine Learning.

I.  INTRODUCTION

In the rapidly evolving landscape of network
technologies, Software-Defined Networking (SDN) has
emerged as a transformative paradigm, offering

unprecedented flexibility and adaptability. However, as
networks become more dynamic and interconnected, the
need for robust security measures becomes increasingly
critical. This project addresses the imperative of fortifying
SDN environments against emerging cyber threats by
harnessing the power of Deep Learning (DL) and Machine
Learning (ML) algorithms.

Traditional security mechanisms often struggle to keep
pace with the agility and complexity of modern network
infrastructures. The integration of DL and ML into SDN
holds the promise of a proactive and intelligent defence
system capable of adapting to the dynamic nature of cyber
threats. By leveraging the capabilities of neural networks,
support vector machines, and decision trees, our approach
aims to revolutionize how security is managed in SDN
environments.

The key focus of this project is to develop a
comprehensive security framework embedded within the
SDN architecture. This framework will be designed to
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analyse network traffic patterns, detect anomalies, and
predict potential security breaches in real-time. The
incorporation of intelligent algorithms will empower SDN
networks to not only identify known threats but also
anticipate and thwart novel and evolving cyberattacks.

Through this initiative, we aim to contribute significantly
to the advancement of network security in SDN, providing a
proactive and adaptive solution to counteract the ever-
growing sophistication of cyber threats. The subsequent
sections of this paper will delve into the methodology,
implementation, and validation of our approach,
demonstrating its potential to enhance the resilience and
security posture of SDN networks.

In essence, this project seeks to bridge the gap between
the dynamic nature of SDN environments and the necessity
for robust, intelligent security mechanisms, ultimately paving
the way for a more secure and resilient future in networked
systems.

Real Time Applications of Proposed work:

1. Deep learning algorithms can continuously analyse
network traffic patterns and behaviour in real-time,
promptly identifying anomalies that may indicate
malicious activities or potential security breaches.

2. The integration of ML algorithms allows the SDN
network to adapt its security policies dynamically
based on evolving threat landscapes. This ensures
that the security measures are always aligned with
the current risk profile of the network.

3. Deep learning models can analyze the behavior of
network entities to detect patterns indicative of
malware propagation or suspicious activities in real-
time.

4. Machine Learning algorithms can enhance access
control mechanisms by continuously learning and
adapting to user and device behavior, helping to
identify unauthorized access attempts in real-time.

5. Deep learning models can process and analyze real-
time threat intelligence feeds, enabling the SDN
network to proactively defend against known
threats as soon as they are identified.
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6. Machine learning algorithms can facilitate rapid
decision-making, enabling the SDN system to
respond promptly to detected threats by isolating
affected components, rerouting traffic, or triggering
preventive measures.

7. Implementing risk-based authentication based on
ML predictions can provide an additional layer of
security for critical network resources.

Il.  BASIC CONCEPTS

A. Software-Defined Networking (SDN) Knowledge

A thorough grasp of SDN concepts, principles, and
components proved essential. This encompassed acquiring
familiarity with the OpenFlow protocol, understanding
controller architecture, and recognizing the pivotal role
controllers play in network management and security [15,
Fig 1.].

B. Mininet and Virtualization

Competence in establishing and configuring Mininet, a
network emulator, proved essential for establishing a
regulated SDN environment to assess the effectiveness of the
attack prevention strategy. A comprehensive understanding
of virtualization and network emulation was crucial to ensure
the faithful representation of network behavior[15].

C. RYU Controller

The RYU controller assumes a pivotal role within the
SDN architecture, serving as a crucial element in the
separation of the control plane from the data plane. This
segregation facilitates the implementation of dynamic and
customizable network configurations [28,30]. RYU primarily
oversees the management of network flows, effectively
executing this task by leveraging protocols like OpenFlow to
interface with SDN-enabled switches and routers. In doing
so, it assumes control over traffic and enforces network
policies. Noteworthy is RYU's inherent support for
OpenFlow, enabling seamless communication with SDN-
compatible network devices [2]. Being Python-based in
design, RYU provides a platform for the development of
tailored network applications. This attribute empowers
enterprises to create customized SDN controllers to address
specific use cases and meet diverse network requirements,
thereby offering a valuable solution for a broad spectrum of
networking challenges.

D. Introduction to ONOS controller

ONOS (Open Network Operating System) stands as an
open-source and freely available software-defined
networking (SDN) controller platform, designed for the
management and control of network infrastructure.
Developed by the Open Networking Foundation (ONF),
ONOS offers a versatile and adaptable framework for
network administration, playing a vital role in our network
security solution.

1) Integration of ONOS in Our Solution:

In our project, ONOS has been seamlessly integrated as
one of the SDN controllers responsible for the management
and control of network devices. ONOS assumes a pivotal
role in orchestrating network actions based on predictions
from our machine learning model. When an attack is
detected, ONOS can initiate actions such as blocking
malicious traffic, isolating affected segments, or notifying
network administrators. Our specialized modules and
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applications enable real-time analysis and response to
network risks, fostering a seamless connection between the
ONOS controller and our machine learning model.

In Figure 2, our experiments have illustrated the
reliability and performance of ONOS in handling dynamic
network conditions and responding swiftly to security threats.
ONOS demonstrates its capability to maintain network
stability while effectively mitigating attacks.effectively.

E. Openflow Protocol

The pivotal success of our project has been significantly
influenced by the indispensable capabilities offered by the
OpenFlow protocol. This protocol has played a vital role in
elevating network management, enhancing security measures,
and ultimately contributing to the overall success of our
project. This section delves into the positive impact of the
OpenFlow protocol on our project, highlighting key aspects
of its contribution.

1) Harnessing OpenFlow for Project Advancements:
a) Dynamic Network Control:

OpenFlow provided us with the capability to dynamically
control the flow of network traffic within our project. This
functionality proved instrumental in optimizing data
transmission, managing traffic patterns, and promptly
responding to evolving project requirements. It ensured the
adaptability of our project's network infrastructure to
changing demands.

b) Centralized Management:

Utilizing OpenFlow, we centralized the management of
our network resources, streamlining project operations. This
centralized approach facilitated the implementation of
project-specific security policies, ensured efficient resource
allocation, and allowed real-time adjustments as needed.

¢) Enhanced Security Measures:

The ability of OpenFlow to direct network traffic played
a crucial role in enhancing project security. It enabled the
redirection of data to our project-specific security
mechanisms, including intrusion detection systems and
firewalls [8]. This strategic redirection bolstered our capacity
to detect and mitigate threats effectively, ensuring the
integrity and confidentiality of our project data.

In summary, the OpenFlow protocol played an
instrumental role in the successful execution of our project.
Its dynamic network control, centralized management, and
security enhancements were critical in efficiently and
securely achieving our project objectives. For a more in-
depth exploration of how the OpenFlow protocol can be
applied in projects similar to ours, we recommend referring
to seminal works on the subject [30].

F. Machine Learning and Linear SVM:

Figure 3 represents, proficiency in machine learning
concepts, particularly Linear Support \ector Machines
(SVM), was essential for building a robust attack detection
model. A grasp of feature engineering, model training, testing,
and evaluation was needed to achieve the desired accuracy in
identifying network attacks [14]. In Figure 4, Linear SVM
works in a feature space, where each feature corresponds to a
dimension [12]. It aims to find the hyperplane that best
separates data points of one class from those of another while
maximizing the margin. This hyperplane is a linear equation,
suchasw T *x +b=0.
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1. LITERATURE SURVEY

This section offers an extensive examination of the
current literature that serves as the foundation for our
research, providing insights into crucial developments and
perspectives on network security, Software-Defined
Networking (SDN), and the incorporation of machine
learning methodologies. Over the past years, the realm of
network security has undergone substantial changes due to
the escalating threat landscape posed by network attacks [1].
Researchers have diligently explored various techniques and
strategies to strengthen network security and effectively
counter these evolving threats. A significant focus within this
extensive body of literature has been on the application of
Software-Defined Networking (SDN)[5], which forms a
pivotal context for our work.

Several studies have emphasized the potential of SDN in
enhancing network security, leveraging its centralized control
and programmable architecture [2]. A common theme in this
research has been the integration of machine learning
techniques, specifically Support Vector Machines (SVM),
with SDN, contributing to advanced capabilities in attack
detection and mitigation. Notably, the utilization of Linear
SVMs has demonstrated significant potential in identifying
network anomalies and attacks, owing to their effectiveness
in classifying network traffic patterns. These investigations
underscore the critical importance of accurate preprocessing
and feature extraction methodologies when implementing
SVM-based intrusion detection systems [6].

Another noteworthy aspect that has garnered
considerable attention in the literature is the exploration of
employing multiple controllers within an SDN framework
[3]. This approach has revealed promising opportunities for
enhancing scalability, fault tolerance, and load balancing in
SDN environments[7]. The rationale behind utilizing
multiple controllers lies in mitigating inherent limitations
associated with a single controller, such as the risk of single
points of failure and scalability bottlenecks. Through the
adoption of multiple controllers, network administrators can
design a more resilient and efficient SDN infrastructure,
aligning with a dimension of our work.

In summary, the literature underscores the evolving
landscape of network security and the transformative role
that SDN, coupled with machine learning techniques like
Linear SVM, plays in mitigating network attacks.
Additionally, the exploration of multiple controllers in SDN
environments presents a promising avenue for enhancing

network security, ensuring robust and reliable network
operations, aligning our work with these significant research
developments [4].

Additionally, Long Short-Term Memory (LSTM)
networks, a specialized type of recurrent neural network,
have gained prominence in recent literature for their ability
to capture temporal dependencies in sequential data,
including network traffic patterns. The application of LSTM
networks in conjunction with SDN could offer enhanced
capabilities in predicting and mitigating sophisticated cyber
threats, an aspect that merits further exploration in future
research endeavours.

IV. DATASET DESCRIPTION

This section presents a detailed exposition of the dataset
employed in our research, offering insights into its origin,
characteristics, and its fundamental impact on shaping our
study[13]. The dataset utilized in this investigation was
procured from Kaggle, a widely recognized platform
renowned for its extensive collection of datasets and
involvement in machine learning competitions [24]. This
specific dataset encompasses authentic network traffic data,
encompassing both legitimate and malicious network
activities. Rigorous preprocessing and analysis procedures
were conducted to uphold the dataset's quality, integrity, and
relevance. The utilization of Kali Linux and R Studio played
a pivotal role in refining the dataset before incorporation [27].
To uphold methodological rigor, the dataset was judiciously
partitioned into distinct training and testing subsets, a crucial
procedural step laying the groundwork for the development
and validation of our Linear SVM model [3]. The empirical
insights derived from this dataset provide substantial
evidence supporting the effectiveness of our proposed
approach in mitigating network attacks within the SDN
environment [17]. In summary, the dataset employed in our

TABLE I. DATASET FIELDS AND IT’S DESCRIPTION

Field Description

timestamp Time at which the data was recorded

datapath_id Identifier for the data path

flow_id Identifier for the network flow

ip_src Source IP address

tp_src Source port

ip_dst Destination IP address

tp_dst Destination port

ip_proto IP protocol (e.g., TCP, UDP)

icmp_code ICMP code (if applicable)

icmp_type ICMP type (if applicable)

flow duration_nsec

Duration of the flow in nanoseconds

flow_duration_sec

Duration of the flow in seconds

idle_timeout

Duration of inactivity before flow
removal

hard_timeout

Maximum allowed duration of the
flow

flags Flags associated with the flow
packet_count Total count of packets in the flow
byte count Total count of bytes in the flow

packet _count_per_second

Packet count per second

packet_count_per_nsecond

Packet count per nanosecond

byte count_per_second

Byte count per second

byte count per_nsecond

Byte count per nanosecond

label

Label indicating the nature of the
network flow




Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 1.F-5.11

study stands as a diverse and robust compilation of network
traffic data, sourced from Kaggle, and meticulously prepared
to serve as a reliable foundation for our research endeavors.
Its indispensable role in our work ensures the credibility and
relevance of our findings [16].

V. SYSTEMREQUIREMENTS

Sufficient processing capability, memory, and network
interfaces are essential, capable of accommodating multiple
controller instances as illustrated in Figure 5 [20]. The
diagram depicts a functional Mininet setup designed for
network emulation, incorporating multiple instances of Ryu
Controller. For data preprocessing and analysis, Kali Linux is
employed, while R Studio is utilized for dataset management
and SVM model development. The research involves the
exploration of realistic attack scenarios within an SDN
environment [24], analyzing the system's response to
simulated attacks. Ensuring proper communication among
switches, hosts, and controllers is crucial for effective system
evaluation [19].

In terms of software requirements, the project mandates
the use of Kali Linux, R Studio, Ryu Controller, and Mininet
with support for multiple controllers. These tools collectively
facilitate the robust execution of the project, encompassing
data preparation, model development, attack scenario
emulation, and comprehensive system analysis.

VI. ARCHITECTURE DIAGRAM
The architectural diagram, a subtype of system diagrams,

provides a conceptual representation of the system's structure.

Illustrated in Figure 6, the architecture diagram delineates the
proposed system, encompassing the entire process—from
establishing the network infrastructure to the creation of a
Linear SVM model for the detection and mitigation of
attacks.

Cleaning and formatting network data
Feature engineering (extracting relevant
features)

Data fed into

Linear SVM (ML)
The model sends alerts or predictions of suspicious activity to
the controllers .

Fig. 2.

LSTM model (DL)

VIl. ALGORITHM

A. Support Vector Machines (Linear SVM):

Linear Support Vector Machines (SVMs) stand as a
classic in machine learning, recognized for their simplicity
and interpretability. Their versatility and computational
efficiency make them a preferred choice for tasks ranging
from binary classification to multi-class settings[21]. As a
stalwart in the machine learning arsenal, Linear SVMs
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continue to illuminate a broad spectrum of problems, often
employing mathematical optimization techniques like the
Sequential Minimal Optimization (SMO) algorithm [23].

Pseudo Code:

Require;: X (features), y (labels), C (regularization

parameter)
Initialize a for all samples
Repeat until convergence:
for i in range(n_samples):
Calculate error €[i] = y[i] - predict(X[i], a, b)
if (a[i] * y[i] < -tolerance and a[i] < C) or ([i] * y[i] >
tolerance and a[i] > 0):
j =randomly_select_sample()
ifil=j:
Update a[i] and a[j] based on constraints and ¢[i], a[j]

B. Deep Learning LSTM Model:

e In your project, the LSTM model was likely trained
on historical network traffic data. This data would
encompass various network parameters like packet
size, inter-arrival times, and source/destination IP
addresses. The LSTM learned to identify patterns
within this data that are characteristic of normal
network behaviour.

e During real-time traffic analysis, the LSTM
continuously receives new data packets. It
compares the features extracted from these packets
with the patterns learned during training. If the
LSTM detects significant deviations from the
established patterns — such as sudden spikes in
traffic volume or unusual packet sizes — it flags this
as a potential anomaly indicative of a DDoS attack.

(=] IPodel.TAT(X train_reshaped, y_train, epochs=10, batch

C. Variable Explanations:

e X (features): This denotes the collection of input
features, encompassing attributes or characteristics
of network traffic data used in training the model.
The algorithm relies on these features for predictions
and data point classification[26].
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y (labels): These represent the corresponding labels
or target values indicating the expected output for
each data point. In the context of network security,
these labels may indicate whether a data point
signifies normal or malicious network activity.

C (regularization parameter): Controlling the trade-
off between maximizing classification margin and
minimizing errors, this parameter plays a pivotal role
in preventing overfitting and adjusting the SVM
decision boundary.

o (alpha): Alpha values stand for Lagrange
multipliers associated with each data point,
optimized during training to influence the
significance of each data point in the SVM model.

b (bias term): The bias term, also known as the
intercept in the SVM model, signifies the offset of
the decision boundary from the origin, influencing
its placement in relation to data points.

n_samples: This represents the overall number of
data points within the dataset.

¢ (epsilon): Epsilon serves as the error term,
measuring the deviation of predicted values from
actual labels. It plays a pivotal role in determining
decision boundaries and support vectors.

tolerance: Tolerance acts as a threshold value,
guiding when to update o values. If the error
surpasses this threshold, the algorithm updates
Lagrange multipliers to refine the SVM model.

randomly_select_sample(): This function randomly
chooses a sample, often denoted as "j," for updates,
contributing to convergence maintenance.

. Stepwise Description of Implementation

Algorithm Steps for Linear SVM:

o Data Preprocessing: Load and preprocess the
dataset, ensuring proper formatting of features
and labels. Divide the dataset into distinct
training and testing subsets.

o Feature Scaling: Apply techniques like
standardization or normalization for consistent
scaling of features.

o Model Training: Instantiate a Linear SVM
classifier and fit it to the training data, allowing
the model to learn the decision boundary.

o Model Evaluation: Utilize the trained SVM
model to predict labels for the testing data.
Assess the model's performance using metrics
such as accuracy, recall, and F1-score.

o Tuning and Optimization: Conduct
hyperparameter tuning to optimize the SVM
model's parameters, including the regularization
parameter (C). Employ techniques like cross-
validation to identify the most suitable
parameters.

o Calculation of Model Accuracy: Determine the
accuracy of the optimized model.

o Deployment and Prediction: Finally, deploy the
optimal model to make predictions on new data.
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o LSTMs can continuously learn and adapt to
evolving attack patterns over time, enhancing the
overall effectiveness of the intrusion detection
system.

2. Algorithm Steps for Mininet:

o Topology Definition: Define the network
structure by creating switches, hosts, and links.
Specify the connectivity and arrangement of
network elements [29].

o Controller Configuration: Select and configure
the SDN controller(s) for the network. Establish
communication protocols between controllers
and switches.

o Link Creation: Form connections between
switches and hosts based on the defined
topology. Configure link characteristics such as
bandwidth, delay, and loss if required [29].

o Network Initialization: Initiate the Mininet
environment by starting switches and hosts.
Verify the connection of controller(s) to the
switches.

o Traffic Generation and Monitoring: Initiate
communication between hosts to generate
network traffic. Monitor and capture network
activity using tools like Wireshark or Mininet's
built-in monitoring features.

o Network Analysis: Evaluate network
performance, latency, throughput, and other
relevant metrics based on the generated traffic.

o Scenario Simulations: Simulate various network
events and scenarios to observe the network’s
behavior under different conditions (e.g., link
failures, congestion).

o Experimentation and  Testing:  Perform
experiments to validate the network’s
functionality, scalability, and robustness.

o Cleanup and Shutdown: Properly conclude the
Mininet environment, releasing resources and
terminating network elements.

VIIl. NETWORK TOPOLOGY

In this section, we present a succinct and relevant
overview of the network topology that serves as the
foundation for our research, with a particular emphasis on its
significance to our experimental setup.

Network Topology for Experimentation:

Our network topology encompasses the following
elements: 8 Hosts, 4 Servers, 6 Switches, and 1 VPN Router.
All 6 switches are interconnected with the VPN router.
Switch 1 is linked to 1 server and 1 host, while Switch 2
connects to 1 host and 1 server. Switches 3 and 4 are
exclusively connected to hosts, switch 5 connects to 1 server
and 1 host, and Switch 6 links to 1 host and 1 server. This
configuration was thoughtfully devised to meet the specific
requirements of our experiment, with a focus on security
considerations and the assessment of the effectiveness of
attack prevention strategies within this network topology.
The careful selection and arrangement of these components
and connections play a crucial role in shaping the outcomes
and findings of our research, defining how network
components are organized and how data is transmitted, as
illustrated in Figure 7.
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IX. RESULTS

Our research has yielded substantial results that warrant
a comprehensive description and analysis. In this section,
we offer a narrative overview of the key findings and
outcomes of our experiment.

The experimentation and validation phase of our
proposed approach yielded promising results, demonstrating
the efficacy of employing LSTM and Linear SVM models
in enhancing SDN network security. Through rigorous
testing on real-world network datasets, we obtained
noteworthy accuracy rates for both models. The Linear
SVM model exhibited a commendable accuracy of 86%,
showcasing its effectiveness in classifying and identifying
potential security threats within the SDN environment.
Leveraging its ability to delineate distinct patterns in
network traffic data, the Linear SVM model contributed
significantly to the overall robustness of our security
framework.

Furthermore, the LSTM model showcased exceptional
performance, attaining an impressive accuracy rate of 91%.
Capitalizing on its ability to capture temporal dependencies
and subtle nuances in network behavior, the LSTM model
proved instrumental in accurately predicting and preempting
security breaches in real-time. These results underscore the
importance and effectiveness of integrating both LSTM and
Linear SVM models within the SDN infrastructure for
bolstering network security. By combining the strengths of
deep learning and machine learning techniques, our
approach offers a comprehensive defense mechanism
against evolving cyber threats, thereby enhancing the
resilience and integrity of SDN networks.

Our results underscore the significance of our approach
in enhancing network security, particularly in addressing
DDOS attacks and ensuring real-time adaptability in the
Software-Defined Networking (SDN) framework. These
findings emphasize the potential of our methodology in
mitigating evolving network threats and weaknesses.
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X. CONCLUSION

In this paper, we introduce a comprehensive solution
aimed at enhancing network security and preventing attacks
by integrating Linear Support Vector Machines (SVM) and
Software-Defined Networking (SDN). Through simulated
attack scenarios, we showcase the effectiveness of our
approach in a simulated SDN environment using Mininet.
Leveraging Kali Linux and R Studio, we developed a Linear
SVM model that achieved an impressive 93% accuracy in
identifying attacks, utilizing the Kaggle dataset [9]. Our
research further extends to a multi-controller SDN
configuration, enhancing network resilience.

This research project investigated the effectiveness of
utilizing machine learning (ML) and deep learning (DL)
algorithms for intrusion detection within a Software-Defined
Network (SDN) environment. Mininet was employed to
create a simulated network consisting of eight hosts, six
switches, and four servers. A DDoS attack was launched
against Host 1 using hping3 to simulate a real-world security
threat.

The implemented solution leveraged two models: a
Support Vector Machine (SVM) and a Long Short-Term
Memory (LSTM) network. Both models were trained to
analyse network traffic patterns and identify anomalies
indicative of DDoS attacks. Upon successful detection, the
models transmitted signals to Ryu and Open Network
Operating System (ONOS) controllers, prompting them to
block the malicious IP address and optimize resource
allocation.

The results of this project demonstrated the potential of
ML and DL algorithms in enhancing network security within
SDN architectures. The implemented models achieved a high
degree of accuracy in detecting DDoS attacks, showcasing
their capability to differentiate between legitimate and
malicious traffic. The integration with SDN controllers
further strengthened the overall defense mechanism, enabling
dynamic traffic management and resource optimization
during security incidents.
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