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Abstract –In the ever-changing landscape of network 

security, Software-Defined Networking (SDN) is a critical 

foundation that requires strong protections against cyber 

threats. This research describes a novel strategy to fortifying 

SDN networks by combining Deep Learning (DL) and Machine 

Learning (ML) approaches. Our solution detects, analyses, and 

prevents potential security breaches in real time by using Long 

Short-Term Memory (LSTM) and Linear Support Vector 

Machine (SVM) models, as well as PyVPN integration. Our 

technology intends to improve SDN network resilience against 

a variety of cyber threats, including malware, intrusions, and 

denial-of-service attacks, by analysing network traffic patterns 

comprehensively and proactively identifying anomalies. 

Through extensive validation, we demonstrate the usefulness of 

our strategy in strengthening SDN network security, 

providinga robust defense mechanism against the ever-

persistent threat landscape. 

Keywords—Network Security, SDN, LSTM, Linear SVM, 

PyVPN, Cyber Threats, Anomaly Detection, Deep Learning, 

Machine Learning. 

I. INTRODUCTION 

In the rapidly evolving landscape of network 
technologies, Software-Defined Networking (SDN) has 
emerged as a transformative paradigm, offering 
unprecedented flexibility and adaptability. However, as 
networks become more dynamic and interconnected, the 
need for robust security measures becomes increasingly 
critical. This project addresses the imperative of fortifying 
SDN environments against emerging cyber threats by 
harnessing the power of Deep Learning (DL) and Machine 
Learning (ML) algorithms. 

Traditional security mechanisms often struggle to keep 
pace with the agility and complexity of modern network 
infrastructures. The integration of DL and ML into SDN 
holds the promise of a proactive and intelligent defence 
system capable of adapting to the dynamic nature of cyber 
threats. By leveraging the capabilities of neural networks, 
support vector machines, and decision trees, our approach 
aims to revolutionize how security is managed in SDN 
environments. 

The key focus of this project is to develop a 
comprehensive security framework embedded within the 
SDN architecture. This framework will be designed to 

analyse network traffic patterns, detect anomalies, and 
predict potential security breaches in real-time. The 
incorporation of intelligent algorithms will empower SDN 
networks to not only identify known threats but also 
anticipate and thwart novel and evolving cyberattacks. 

Through this initiative, we aim to contribute significantly 
to the advancement of network security in SDN, providing a 
proactive and adaptive solution to counteract the ever-
growing sophistication of cyber threats. The subsequent 
sections of this paper will delve into the methodology, 
implementation, and validation of our approach, 
demonstrating its potential to enhance the resilience and 
security posture of SDN networks. 

In essence, this project seeks to bridge the gap between 
the dynamic nature of SDN environments and the necessity 
for robust, intelligent security mechanisms, ultimately paving 
the way for a more secure and resilient future in networked 
systems. 

Real Time Applications of Proposed work: 

1. Deep learning algorithms can continuously analyse 
network traffic patterns and behaviour in real-time, 
promptly identifying anomalies that may indicate 
malicious activities or potential security breaches. 

2. The integration of ML algorithms allows the SDN 
network to adapt its security policies dynamically 
based on evolving threat landscapes. This ensures 
that the security measures are always aligned with 
the current risk profile of the network. 

3. Deep learning models can analyze the behavior of 
network entities to detect patterns indicative of 
malware propagation or suspicious activities in real-
time. 

4. Machine Learning algorithms can enhance access 
control mechanisms by continuously learning and 
adapting to user and device behavior, helping to 
identify unauthorized access attempts in real-time. 

5. Deep learning models can process and analyze real-
time threat intelligence feeds, enabling the SDN 
network to proactively defend against known 
threats as soon as they are identified. 
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6. Machine learning algorithms can facilitate rapid 
decision-making, enabling the SDN system to 
respond promptly to detected threats by isolating 
affected components, rerouting traffic, or triggering 
preventive measures. 

7. Implementing risk-based authentication based on 
ML predictions can provide an additional layer of 
security for critical network resources. 

II. BASIC CONCEPTS 

A. Software-Defined Networking (SDN) Knowledge 

A thorough grasp of SDN concepts, principles, and 
components proved essential. This encompassed acquiring 
familiarity with the OpenFlow protocol, understanding 
controller architecture, and recognizing the pivotal role 
controllers play in network management and security [15, 
Fig 1.]. 

B. Mininet and Virtualization 

Competence in establishing and configuring Mininet, a 
network emulator, proved essential for establishing a 
regulated SDN environment to assess the effectiveness of the 
attack prevention strategy. A comprehensive understanding 
of virtualization and network emulation was crucial to ensure 
the faithful representation of network behavior[15]. 

C. RYU Controller 

 The RYU controller assumes a pivotal role within the 
SDN architecture, serving as a crucial element in the 
separation of the control plane from the data plane. This 
segregation facilitates the implementation of dynamic and 
customizable network configurations [28,30]. RYU primarily 
oversees the management of network flows, effectively 
executing this task by leveraging protocols like OpenFlow to 
interface with SDN-enabled switches and routers. In doing 
so, it assumes control over traffic and enforces network 
policies. Noteworthy is RYU's inherent support for 
OpenFlow, enabling seamless communication with SDN-
compatible network devices [2]. Being Python-based in 
design, RYU provides a platform for the development of 
tailored network applications. This attribute empowers 
enterprises to create customized SDN controllers to address 
specific use cases and meet diverse network requirements, 
thereby offering a valuable solution for a broad spectrum of 
networking challenges. 

D. Introduction to ONOS controller 

ONOS (Open Network Operating System) stands as an 
open-source and freely available software-defined 
networking (SDN) controller platform, designed for the 
management and control of network infrastructure. 
Developed by the Open Networking Foundation (ONF), 
ONOS offers a versatile and adaptable framework for 
network administration, playing a vital role in our network 
security solution. 

1) Integration of ONOS in Our Solution: 
In our project, ONOS has been seamlessly integrated as 

one of the SDN controllers responsible for the management 
and control of network devices. ONOS assumes a pivotal 
role in orchestrating network actions based on predictions 
from our machine learning model. When an attack is 
detected, ONOS can initiate actions such as blocking 
malicious traffic, isolating affected segments, or notifying 
network administrators. Our specialized modules and 

applications enable real-time analysis and response to 
network risks, fostering a seamless connection between the 
ONOS controller and our machine learning model. 

In Figure 2, our experiments have illustrated the 
reliability and performance of ONOS in handling dynamic 
network conditions and responding swiftly to security threats. 
ONOS demonstrates its capability to maintain network 
stability while effectively mitigating attacks.effectively. 

E. Openflow Protocol 

The pivotal success of our project has been significantly 
influenced by the indispensable capabilities offered by the 
OpenFlow protocol. This protocol has played a vital role in 
elevating network management, enhancing security measures, 
and ultimately contributing to the overall success of our 
project. This section delves into the positive impact of the 
OpenFlow protocol on our project, highlighting key aspects 
of its contribution. 

1) Harnessing OpenFlow for Project Advancements: 

a) Dynamic Network Control: 

OpenFlow provided us with the capability to dynamically 
control the flow of network traffic within our project. This 
functionality proved instrumental in optimizing data 
transmission, managing traffic patterns, and promptly 
responding to evolving project requirements. It ensured the 
adaptability of our project's network infrastructure to 
changing demands. 

b) Centralized Management: 

Utilizing OpenFlow, we centralized the management of 
our network resources, streamlining project operations. This 
centralized approach facilitated the implementation of 
project-specific security policies, ensured efficient resource 
allocation, and allowed real-time adjustments as needed. 

c) Enhanced Security Measures: 

The ability of OpenFlow to direct network traffic played 
a crucial role in enhancing project security. It enabled the 
redirection of data to our project-specific security 
mechanisms, including intrusion detection systems and 
firewalls [8]. This strategic redirection bolstered our capacity 
to detect and mitigate threats effectively, ensuring the 
integrity and confidentiality of our project data. 

In summary, the OpenFlow protocol played an 
instrumental role in the successful execution of our project. 
Its dynamic network control, centralized management, and 
security enhancements were critical in efficiently and 
securely achieving our project objectives. For a more in-
depth exploration of how the OpenFlow protocol can be 
applied in projects similar to ours, we recommend referring 
to seminal works on the subject [30]. 

F. Machine Learning and Linear SVM: 

Figure 3 represents, proficiency in machine learning 
concepts, particularly Linear Support Vector Machines 
(SVM), was essential for building a robust attack detection 
model. A grasp of feature engineering, model training, testing, 
and evaluation was needed to achieve the desired accuracy in 
identifying network attacks [14]. In Figure 4, Linear SVM 
works in a feature space, where each feature corresponds to a 
dimension [12]. It aims to find the hyperplane that best 
separates data points of one class from those of another while 
maximizing the margin. This hyperplane is a linear equation, 
such as w^T * x + b = 0. 
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Fig. 1.  

III. LITERATURE SURVEY 

This section offers an extensive examination of the 
current literature that serves as the foundation for our 
research, providing insights into crucial developments and 
perspectives on network security, Software-Defined 
Networking (SDN), and the incorporation of machine 
learning methodologies. Over the past years, the realm of 
network security has undergone substantial changes due to 
the escalating threat landscape posed by network attacks [1]. 
Researchers have diligently explored various techniques and 
strategies to strengthen network security and effectively 
counter these evolving threats. A significant focus within this 
extensive body of literature has been on the application of 
Software-Defined Networking (SDN)[5], which forms a 
pivotal context for our work. 

Several studies have emphasized the potential of SDN in 
enhancing network security, leveraging its centralized control 
and programmable architecture [2]. A common theme in this 
research has been the integration of machine learning 
techniques, specifically Support Vector Machines (SVM), 
with SDN, contributing to advanced capabilities in attack 
detection and mitigation. Notably, the utilization of Linear 
SVMs has demonstrated significant potential in identifying 
network anomalies and attacks, owing to their effectiveness 
in classifying network traffic patterns. These investigations 
underscore the critical importance of accurate preprocessing 
and feature extraction methodologies when implementing 
SVM-based intrusion detection systems [6]. 

Another noteworthy aspect that has garnered 
considerable attention in the literature is the exploration of 
employing multiple controllers within an SDN framework 
[3]. This approach has revealed promising opportunities for 
enhancing scalability, fault tolerance, and load balancing in 
SDN environments[7]. The rationale behind utilizing 
multiple controllers lies in mitigating inherent limitations 
associated with a single controller, such as the risk of single 
points of failure and scalability bottlenecks. Through the 
adoption of multiple controllers, network administrators can 
design a more resilient and efficient SDN infrastructure, 
aligning with a dimension of our work. 

In summary, the literature underscores the evolving 
landscape of network security and the transformative role 
that SDN, coupled with machine learning techniques like 
Linear SVM, plays in mitigating network attacks. 
Additionally, the exploration of multiple controllers in SDN 
environments presents a promising avenue for enhancing 

network security, ensuring robust and reliable network 
operations, aligning our work with these significant research 
developments [4]. 

Additionally, Long Short-Term Memory (LSTM) 
networks, a specialized type of recurrent neural network, 
have gained prominence in recent literature for their ability 
to capture temporal dependencies in sequential data, 
including network traffic patterns. The application of LSTM 
networks in conjunction with SDN could offer enhanced 
capabilities in predicting and mitigating sophisticated cyber 
threats, an aspect that merits further exploration in future 
research endeavours. 

IV. DATASET DESCRIPTION 

This section presents a detailed exposition of the dataset 
employed in our research, offering insights into its origin, 
characteristics, and its fundamental impact on shaping our 
study[13]. The dataset utilized in this investigation was 
procured from Kaggle, a widely recognized platform 
renowned for its extensive collection of datasets and 
involvement in machine learning competitions [24]. This 
specific dataset encompasses authentic network traffic data, 
encompassing both legitimate and malicious network 
activities. Rigorous preprocessing and analysis procedures 
were conducted to uphold the dataset's quality, integrity, and 
relevance. The utilization of Kali Linux and R Studio played 
a pivotal role in refining the dataset before incorporation [27]. 
To uphold methodological rigor, the dataset was judiciously 
partitioned into distinct training and testing subsets, a crucial 
procedural step laying the groundwork for the development 
and validation of our Linear SVM model [3]. The empirical 
insights derived from this dataset provide substantial 
evidence supporting the effectiveness of our proposed 
approach in mitigating network attacks within the SDN 
environment [17]. In summary, the dataset employed in our  

TABLE I.  DATASET FIELDS AND IT’S DESCRIPTION 

Field Description 
timestamp Time at which the data was recorded 

datapath_id Identifier for the data path 

flow_id Identifier for the network flow 

ip_src Source IP address 

tp_src Source port 

ip_dst Destination IP address 

tp_dst Destination port 

ip_proto IP protocol (e.g., TCP, UDP) 

icmp_code ICMP code (if applicable) 

icmp_type ICMP type (if applicable) 

flow_duration_nsec Duration of the flow in nanoseconds 

flow_duration_sec Duration of the flow in seconds 

idle_timeout Duration of inactivity before flow 

removal 

hard_timeout Maximum allowed duration of the 

flow 

flags Flags associated with the flow 

packet_count Total count of packets in the flow 

byte_count Total count of bytes in the flow 

packet_count_per_second Packet count per second 

packet_count_per_nsecond Packet count per nanosecond 

byte_count_per_second Byte count per second 

byte count per_nsecond Byte count per nanosecond 

label Label indicating the nature of the 

network flow 
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study stands as a diverse and robust compilation of network 
traffic data, sourced from Kaggle, and meticulously prepared 
to serve as a reliable foundation for our research endeavors. 
Its indispensable role in our work ensures the credibility and 
relevance of our findings [16]. 

V. SYSTEM REQUIREMENTS 

Sufficient processing capability, memory, and network 
interfaces are essential, capable of accommodating multiple 
controller instances as illustrated in Figure 5 [20]. The 
diagram depicts a functional Mininet setup designed for 
network emulation, incorporating multiple instances of Ryu 
Controller. For data preprocessing and analysis, Kali Linux is 
employed, while R Studio is utilized for dataset management 
and SVM model development. The research involves the 
exploration of realistic attack scenarios within an SDN 
environment [24], analyzing the system's response to 
simulated attacks. Ensuring proper communication among 
switches, hosts, and controllers is crucial for effective system 
evaluation [19]. 

In terms of software requirements, the project mandates 
the use of Kali Linux, R Studio, Ryu Controller, and Mininet 
with support for multiple controllers. These tools collectively 
facilitate the robust execution of the project, encompassing 
data preparation, model development, attack scenario 
emulation, and comprehensive system analysis. 

VI. ARCHITECTURE DIAGRAM 

The architectural diagram, a subtype of system diagrams, 
provides a conceptual representation of the system's structure. 
Illustrated in Figure 6, the architecture diagram delineates the 
proposed system, encompassing the entire process—from 
establishing the network infrastructure to the creation of a 
Linear SVM model for the detection and mitigation of 
attacks. 

 
Fig. 2.  

VII. ALGORITHM 

A. Support Vector Machines (Linear SVM): 

Linear Support Vector Machines (SVMs) stand as a 
classic in machine learning, recognized for their simplicity 
and interpretability. Their versatility and computational 
efficiency make them a preferred choice for tasks ranging 
from binary classification to multi-class settings[21]. As a 
stalwart in the machine learning arsenal, Linear SVMs 

continue to illuminate a broad spectrum of problems, often 
employing mathematical optimization techniques like the 
Sequential Minimal Optimization (SMO) algorithm [23]. 

Pseudo Code: 

Require: X (features), y (labels), C (regularization 

parameter) 

Initialize a for all samples 

Repeat until convergence: 

    for i in range(n_samples): 

        Calculate error ɛ[i] = y[i] - predict(X[i], a, b) 

        if (a[i] * y[i] < -tolerance and a[i] < C) or (ɛ[i] * y[i] > 

tolerance and a[i] > 0): 

            j = randomly_select_sample() 

            if i != j: 

Update a[i] and a[j] based on constraints and ɛ[i], a[j] 

B. Deep Learning LSTM Model: 

 In your project, the LSTM model was likely trained 
on historical network traffic data. This data would 
encompass various network parameters like packet 
size, inter-arrival times, and source/destination IP 
addresses. The LSTM learned to identify patterns 
within this data that are characteristic of normal 
network behaviour. 

 During real-time traffic analysis, the LSTM 

continuously receives new data packets. It 

compares the features extracted from these packets 

with the patterns learned during training. If the 

LSTM detects significant deviations from the 

established patterns – such as sudden spikes in 

traffic volume or unusual packet sizes – it flags this 

as a potential anomaly indicative of a DDoS attack. 

 

 

C. Variable Explanations: 

 X (features): This denotes the collection of input 
features, encompassing attributes or characteristics 
of network traffic data used in training the model. 
The algorithm relies on these features for predictions 
and data point classification[26]. 
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 y (labels): These represent the corresponding labels 
or target values indicating the expected output for 
each data point. In the context of network security, 
these labels may indicate whether a data point 
signifies normal or malicious network activity. 

 C (regularization parameter): Controlling the trade-
off between maximizing classification margin and 
minimizing errors, this parameter plays a pivotal role 
in preventing overfitting and adjusting the SVM 
decision boundary. 

 α (alpha): Alpha values stand for Lagrange 
multipliers associated with each data point, 
optimized during training to influence the 
significance of each data point in the SVM model. 

 b (bias term): The bias term, also known as the 
intercept in the SVM model, signifies the offset of 
the decision boundary from the origin, influencing 
its placement in relation to data points. 

 n_samples: This represents the overall number of 
data points within the dataset. 

 ε (epsilon): Epsilon serves as the error term, 
measuring the deviation of predicted values from 
actual labels. It plays a pivotal role in determining 
decision boundaries and support vectors. 

 tolerance: Tolerance acts as a threshold value, 
guiding when to update α values. If the error 
surpasses this threshold, the algorithm updates 
Lagrange multipliers to refine the SVM model. 

 randomly_select_sample(): This function randomly 
chooses a sample, often denoted as "j," for updates, 
contributing to convergence maintenance. 

D. Stepwise Description of Implementation 

1. Algorithm Steps for Linear SVM: 

o Data Preprocessing: Load and preprocess the 

dataset, ensuring proper formatting of features 

and labels. Divide the dataset into distinct 

training and testing subsets. 

o Feature Scaling: Apply techniques like 

standardization or normalization for consistent 

scaling of features. 

o Model Training: Instantiate a Linear SVM 

classifier and fit it to the training data, allowing 

the model to learn the decision boundary. 

o Model Evaluation: Utilize the trained SVM 

model to predict labels for the testing data. 

Assess the model's performance using metrics 

such as accuracy, recall, and F1-score. 

o Tuning and Optimization: Conduct 

hyperparameter tuning to optimize the SVM 

model's parameters, including the regularization 

parameter (C). Employ techniques like cross-

validation to identify the most suitable 

parameters. 

o Calculation of Model Accuracy: Determine the 

accuracy of the optimized model. 

o Deployment and Prediction: Finally, deploy the 

optimal model to make predictions on new data. 

o LSTMs can continuously learn and adapt to 

evolving attack patterns over time, enhancing the 

overall effectiveness of the intrusion detection 

system. 

2. Algorithm Steps for Mininet: 

o Topology Definition: Define the network 

structure by creating switches, hosts, and links. 

Specify the connectivity and arrangement of 

network elements [29]. 

o Controller Configuration: Select and configure 

the SDN controller(s) for the network. Establish 

communication protocols between controllers 

and switches. 

o Link Creation: Form connections between 

switches and hosts based on the defined 

topology. Configure link characteristics such as 

bandwidth, delay, and loss if required [29]. 

o Network Initialization: Initiate the Mininet 

environment by starting switches and hosts. 

Verify the connection of controller(s) to the 

switches. 

o Traffic Generation and Monitoring: Initiate 

communication between hosts to generate 

network traffic. Monitor and capture network 

activity using tools like Wireshark or Mininet's 

built-in monitoring features. 

o Network Analysis: Evaluate network 

performance, latency, throughput, and other 

relevant metrics based on the generated traffic. 

o Scenario Simulations: Simulate various network 

events and scenarios to observe the network's 

behavior under different conditions (e.g., link 

failures, congestion). 

o Experimentation and Testing: Perform 

experiments to validate the network's 

functionality, scalability, and robustness. 

o Cleanup and Shutdown: Properly conclude the 

Mininet environment, releasing resources and 

terminating network elements. 

VIII. NETWORK TOPOLOGY 

In this section, we present a succinct and relevant 
overview of the network topology that serves as the 
foundation for our research, with a particular emphasis on its 
significance to our experimental setup. 

Network Topology for Experimentation: 
Our network topology encompasses the following 

elements: 8 Hosts, 4 Servers, 6 Switches, and 1 VPN Router. 
All 6 switches are interconnected with the VPN router. 
Switch 1 is linked to 1 server and 1 host, while Switch 2 
connects to 1 host and 1 server. Switches 3 and 4 are 
exclusively connected to hosts, switch 5 connects to 1 server 
and 1 host, and Switch 6 links to 1 host and 1 server. This 
configuration was thoughtfully devised to meet the specific 
requirements of our experiment, with a focus on security 
considerations and the assessment of the effectiveness of 
attack prevention strategies within this network topology. 
The careful selection and arrangement of these components 
and connections play a crucial role in shaping the outcomes 
and findings of our research, defining how network 
components are organized and how data is transmitted, as 
illustrated in Figure 7. 
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Fig. 3.  

IX. RESULTS 

Our research has yielded substantial results that warrant 
a comprehensive description and analysis. In this section, 
we offer a narrative overview of the key findings and 
outcomes of our experiment. 

The experimentation and validation phase of our 
proposed approach yielded promising results, demonstrating 
the efficacy of employing LSTM and Linear SVM models 
in enhancing SDN network security. Through rigorous 
testing on real-world network datasets, we obtained 
noteworthy accuracy rates for both models. The Linear 
SVM model exhibited a commendable accuracy of 86%, 
showcasing its effectiveness in classifying and identifying 
potential security threats within the SDN environment. 
Leveraging its ability to delineate distinct patterns in 
network traffic data, the Linear SVM model contributed 
significantly to the overall robustness of our security 
framework.  

Furthermore, the LSTM model showcased exceptional 
performance, attaining an impressive accuracy rate of 91%. 
Capitalizing on its ability to capture temporal dependencies 
and subtle nuances in network behavior, the LSTM model 
proved instrumental in accurately predicting and preempting 
security breaches in real-time. These results underscore the 
importance and effectiveness of integrating both LSTM and 
Linear SVM models within the SDN infrastructure for 
bolstering network security. By combining the strengths of 
deep learning and machine learning techniques, our 
approach offers a comprehensive defense mechanism 
against evolving cyber threats, thereby enhancing the 
resilience and integrity of SDN networks. 

Our results underscore the significance of our approach 
in enhancing network security, particularly in addressing 
DDOS attacks and ensuring real-time adaptability in the 
Software-Defined Networking (SDN) framework. These 
findings emphasize the potential of our methodology in 
mitigating evolving network threats and weaknesses. 

 

Fig. 4.  

X. CONCLUSION 

In this paper, we introduce a comprehensive solution 
aimed at enhancing network security and preventing attacks 
by integrating Linear Support Vector Machines (SVM) and 
Software-Defined Networking (SDN). Through simulated 
attack scenarios, we showcase the effectiveness of our 
approach in a simulated SDN environment using Mininet. 
Leveraging Kali Linux and R Studio, we developed a Linear 
SVM model that achieved an impressive 93% accuracy in 
identifying attacks, utilizing the Kaggle dataset [9]. Our 
research further extends to a multi-controller SDN 
configuration, enhancing network resilience. 

This research project investigated the effectiveness of 
utilizing machine learning (ML) and deep learning (DL) 
algorithms for intrusion detection within a Software-Defined 
Network (SDN) environment. Mininet was employed to 
create a simulated network consisting of eight hosts, six 
switches, and four servers. A DDoS attack was launched 
against Host 1 using hping3 to simulate a real-world security 
threat. 

The implemented solution leveraged two models: a 

Support Vector Machine (SVM) and a Long Short-Term 

Memory (LSTM) network. Both models were trained to 

analyse network traffic patterns and identify anomalies 

indicative of DDoS attacks. Upon successful detection, the 

models transmitted signals to Ryu and Open Network 

Operating System (ONOS) controllers, prompting them to 

block the malicious IP address and optimize resource 

allocation. 
The results of this project demonstrated the potential of 

ML and DL algorithms in enhancing network security within 
SDN architectures. The implemented models achieved a high 
degree of accuracy in detecting DDoS attacks, showcasing 
their capability to differentiate between legitimate and 
malicious traffic. The integration with SDN controllers 
further strengthened the overall defense mechanism, enabling 
dynamic traffic management and resource optimization 
during security incidents. 
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