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Abstract: Deep Convolutional Neural Network (CNN) based 

methods have become more powerful for wide variety of 

applications particularly in Natural Language Processing and 

Computer vision. Nevertheless, the CNN-based methods are 

computational expensive and more resource-hungry, and hence 

are becoming difficult to implement on battery operated 

devices like smart phones, AR/VR glasses, Autonomous Robots 

etc. Also with the increasing complexity of deep learning 

models like ResNet-50, there is a growing demand for efficient 

hardware accelerators to handle the computational workload. 

In this paper, we present the design and implementation of a 

neural network accelerator tailored for ResNet-50 on the 

ZCU102 platform using Field-Programmable Gate Arrays 

(FPGAs) which offers and customizable solution to address this 

challenge. We systematically investigate the design choices and 

optimization strategies for deploying custom built ResNet-50 

network trained for Indian Sign language translation of 76 

gestures enacted and build in our labs for Doctor patient 

interface on FPGA-based accelerators. In order to enhance 

operational speed, we have employed various techniques, 

including parallelism and pipelining, leveraging Depthwise 

Separable Convolution. Furthermore, we have implemented 

hierarchical memory allocation for different offsets using 

threads. Additionally, we have utilized weight and data 

quantization to optimize operational speed while minimizing 

resource consumption, thus achieving low power consumption 

while maintaining acceptable levels of inference accuracy. We, 

evaluated our accelerated FPGA model against CPU interms of 

various performance metrics viz: frames per second (fps), 

Memory allocations, LUTs, DSPs and Block RAMs used. Our 

findings underscore the superiority of FPGA-based 

accelerators, as evidenced by achieving a frame rate of 2.7fps 

on the Xilinx Ultra Scale ZCU102 platform with int8 

quantization, compared to 0.8fps for Single precision. In 

contrast, the CPU achieved a frame rate of 0.6fps. Notably, we 

observed a minimal accuracy variation of only 1.37% with int8 

quantization, while no accuracy variation was observed for 

Single precision. Our implementation utilized 16 convolution 

threads and 4 FC threads operating at 200 MHz for single 

precision, whereas for int8, we employed 25 convolution 

threads and 16 FC threads operating at 250 MHz. 

Keywords: FPGA accelerator, Data quantization, 

optimization, Xilinx Ultra Scale ZCU102 

I. INTRODUCTION: 

Video and image classification is basic problem in 
computer vision. CNNs are led to great advances in image 
classification accurately [1] Russakovsky et.al. Accuracies 
are improving on ImageNet day by day with advances in 
CNN based networks as compared to traditional methods. 
Even though they achieve state-of-the-art performance, 
CNN-based methods require significantly more 

computations and memory resources. Due of this, the 
majority of CNN-based implementations require High end 
servers.  

CNN models, like the 5-layer LeNet, are suitable for 
basic tasks like MNIST handwritten text recognition [18]. 
Because of their extreme complexity, state-of-the-art CNN 
models for large-scale image classification can only be kept 
in external memory. In this way, memory and bandwidth 
especially for embedded system becomes a significant barrier 
to CNN acceleration. 

To address this issuewe focus on leveraging Field-
Programmable Gate Arrays (FPGAs) to accelerate deep 
learning inference tasks [2, 3, 4, 5, 6, 7,8,9], specifically 
targeting the deployment of a quantized ResNet-50 neural 
network model trained on our custom built Indian Sign 
language database for Doctor patient interface [10] on the 
Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit.  

We present the flow for single and int8precision data 
quantization. Results show that only a 1.37% accuracy loss is 
introduced with ResNet-50 model with 8 -bit weight and bias 
quantization as compared to using Single precision.  

We begin by initializing a pre-trained ResNet-50 network 
and then quantizing [11] it using a deep learning quantizer 
with FPGA execution environment specifications. This step 
ensures that the network is optimized for deployment on 
FPGA hardware while maintaining acceptable inference 
accuracy. Subsequently, we calibrate the quantizer using ISL 
dataset to fine-tune the quantization parameters for optimal 
performance. 

To facilitate deployment on the ZCU102 platform, we 
configure the processor settings, specifying the bitstream and 
synthesis tool, essential for FPGA synthesis. To further 
optimize the hardware configuration for real-world 
deployment we employ optimization techniques tailored to 
the specific characteristics of the quantized ResNet-50 model. 
This optimization process aims at finding the optimum 
threads to be used both in Convolution and FC layer for 
performing parallel depth wise convolution operations to 
meet the throughput requirements in terms of frames per 
second(fps), ensuring efficient utilization of FPGA resources 
viz LUTs, DSPs, Block RAMS. 

Finally, we utilize Xilinx Vivado as the synthesis tool and 
configure the hardware target interface for JTAG 
communication. Leveraging these tools and techniques, we 
build the optimized processor configuration, ready for 
deployment on the ZCU102 FPGA platform. We could 
achievean accuracy of 84.07% for ZCU102 with single 
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precisionwith a speed of 0.8 fps and an accuracy of 82.89% 
for ZCU102_int8 at 2.7fps. 

II. BACKGROUND  

A. A deep CNN model 

A conventional Convolutional Neural Network (CNN) 
architecture comprises a cascade of filter channels, executed 
sequentially. The model's parameters, commonly referred to 
as "weights," are optimized during the training process. The 
initial layer of the CNN processes an input image and 
produces a set of global feature maps. Subsequent layers 
analyze these feature maps from preceding layers, generating 
more localized feature maps. Finally, a classifier layer, 
typically a Fully Connected (FC) layer coupled with a 
SoftMax layer, yields the probabilities associated with each 
category that the input image potentially belongs to. The 
CONV layer and FC layer represent two fundamental types 
of layers within the CNN framework. Following CONV 
layers, pooling layers are commonly incorporated to perform 
down-sampling of the feature maps, thereby reducing their 

dimensionality and mitigating sparsity. A typical CNN 
example is shown in Figure 1. 

 

Fig. 1. Basic CNN structure from feature map  

B. FPGA-BASED ACCELERATORS: 

FPGA-based neural network accelerators are increasingly 
preferred over CPUs due to their superior efficiency [12]. 
FPGAs exploit parallelism to accelerate computations by 
mapping them onto parallel hardware, allowing multiple 
DNN structures to execute concurrently on the FPGA. These 
accelerators can achieve speedups of several orders of 
magnitude compared to baseline CPUs [9]. FPGAs offer 
designers the flexibility to implement only the necessary 
logic in hardware tailored to the target application. 
Architectures of FPGA-based DNN accelerators typically 
comprise a host computer and an FPGA component 
responsible for executing DNN algorithms.  

FPGA-based DNN accelerators [13], can be broadly 
categorized into two types: accelerators tailored for specific 
applications such as speech recognition, object detection, and 
natural language processing, and accelerators designed for 
specific algorithms such as CNN and RNN. Additionally, 
there exist accelerator frameworks equipped with hardware 
templates. The design complexity of accelerators for the first 
two categories is relatively low. In this study, we utilize an 
accelerator for for Sign language recognition using pre-
trained ResNet50 network and transfer learning. 

III. DATASET 

For the creation of an Indian Sign Language (ISL) 
recognition model, a dataset is constructed within the 
anechoic chamber, funded by UGC-MRP, situated in the 
ECE Department at JNTUHUCESTH. This dataset 
encompasses 76 unique ISL signs associated with doctor-
patient interaction words and phrases. Each sign is depicted 
through 50 individual gesture videos performed by 10 

individuals. Consequently, a total of 3800 videos have been 
collected and utilized to enable comprehensive training for 
optimal model performance. 

No. of persons: 10 

No. of videos per person: 5 

Video details: frame width and height 1920×1080 

Duration: 2 to 4sec, frame rate: 50 fps 

IV. SYSTEM DESIGN  

The image classification model ResNet50 will extract 
features from each frame of the ISL (Indian Sign Language) 
video for predicting the video labels. Video is converted into 
frames and mediapipe python framework is applied to extract 
knuckle points of the hands. These images are given to 
ResNet 50 pre trained model for training 76 gestures.  The 
trained model is deployed onto ZCU102 board and tested for 
accuracies of each gesture of ISL.   

Figure 2(a) illustrates the system architecture specifically 
tailored for the ZCU102 platform. Given the non-utilization 
of the Heterogeneous Processing System (HPS) in this 
particular design, only the FPGA segment is depicted. The 
DDR4 memory module is directly linked to the FPGA 
portion. Operating at a clock frequency of 250MHz, the 
CNN accelerator(ResNet50) encounters frequency 
constraints primarily imposed by its adder tree configuration. 
To facilitate the seamless transfer of weights and input 
images from flash memory to DDR4 external memory, a 
Vitis AI softcore microprocessor is instantiated. The 
integration of an external memory interface IP alongside a 
Modular Scatter-Gather Direct Memory Access (mSG-DMA) 
IP is employed to effectively bridge the buffers in CNN 
accelerator [14] and the FPGA memory. 

 

Fig. 2. (a) FPGA System Architecture 

 

 

Fig2 (b) Architecture of CNN accelerator based on embedded FPGA 

platform 
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Fig 2(b) shows how acceleration on FPGA is performed. 
It is done under two heads: 

 

A.  Data Quantization: 

Accelerating large CNN models on embedded FPGA 
platforms necessitates data quantization, a critical aspect 
where achieving a concise representation with minimal loss 
in accuracy is paramount. Utilizing fixed-point arithmetic 
units on FPGAs proves advantageous due to their lower 
resource requirements compared to floating-point 
implementations. Contemporary CNN accelerators leverage 
fixed-point arithmetic [3, 15, 16, 2] for enhanced 
acceleration while maintaining inference accuracy. 
Additionally, reducing precision from 32-bit to 8-bit for both 
data and weights yields significant reductions in memory 
footprint and computational resources.  

For instance, Chen et al. demonstrated that the area and 
power consumption of a 16-bit multiplier are 0.164× and 
0.136× respectively, compared to a 32-bit multiplier, using 
65nm fabrication technology. Previous studies predominantly 
adopted the 16-bit quantization strategy [17, 15, 3, 4]. In [3], 
Chen et al. observed that employing 16-bit numbers instead 
of 32-bit ones resulted in a mere 0.26% increase in error rate 
on the MNIST dataset. Similarly, in [4], 16-bit numbers were 
employed during inference while 32-bit numbers were used 
during training, showcasing a 0.01% reduction in accuracy 
on the MNIST dataset. 

With this understanding in our work, we have worked 
withfloating single (16-bit) and fixed int8 for weight and bias 
representation during inferenceto reduce computational 
complexity and compared the resultant recognition 
accuracies. However, while training we have used 64 bit 
precision on GPU based computer since training will be done 
offline and hence there is less constraint on speed or 
computational resources.  

 

B. Optimization of processor configuration: 

The total number of multiplications to be used for 
performing Standard Convolution operation is  C × Mk

2 
× 

Mp
2 
×L,whereMk× Mk is image size, C is number of channels, 

and output size will be Mp× Mp. 

In our FPGA processing we have used depth wise 
separable convolution. 

Depth wise separable convolution is performed using two 
processes: 

1. Depth wise convolutions 

2. Point wise convolutions 

Depth wise convolution: Convolution will be applied to 
single channel unlike standard convolution.So filter or kernel 
size will be of size Mk× Mk× 1. If there are C channels in 
input data then C such filters are required and hence the 
output will be of sizeMp× Mp ×C. For depth wise 
convolution total no. of multiplications required are C × Mk

2 
× Mp

2 

 

Fig. 3. Depthwise convolution operation 

Point wise convolution: 1×1 convolution operation is 
applied on C channels. Size of the filter is 1×1× C. Using L 
such filters the output becomes Mp × Mp ×L. Total number of 
multiplications required for point wise convolution is C× 
Mp

2 × L 

 

Fig. 4. Point wise convolution operation 

Hence the total numberof multiplicationsrequired for 
Depth wise separable convolution = depth wise +pointwise 
multiplications 

= C × Mk 
2 × Mp

2 + C× Mp
2 × L= C× Mp

2 (Mk
2 +L) 

From above equations compared to standard convolution 
depth wise convolution operations are less by a ratio of (1/L) 
+ (1/Mk

2). 

The number of LUTS, BRAMS and DSPs required will 
be increasing very heavily which in turn will increase the 
power consumption if the convolution is applied on a single 
channel as mentioned abovein depth wise convolution. 
Hence to have a tradeoff between the speed of operations and 
power consumption we have proposed to perform the depth 
wise separable Convolutions using multiple threads so that a 
bunch of convolutions will be performed serially and 
remaining convolutions are done in parallel. 

V.  IMPLEMENTATION DETAILS 

 

 

Fig. 5. . Zcu102 Development board image 
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A. Quantization of Deep learning Network: 

Quantization is a process to represent a continuous value 
(floating point) expressed as a real number as an integer 
multiple, which is a quantum of the smaller unit. 

This technique is the most basic and easy way to use 
trained models to make inferences quickly, reducing 
operation costs, reduce calculation loads and reduce memory 
consumption. However, the accuracies may suffer if the 
quantization step size is very big.We have used int8 and 
single precision for both computations and memory accesses 
with lower precision data and compared the performance. 

Fig5shows the minimum and maximum values used by 
the network for weights, biases and activations while using 
int8.  

 

Fig. 6. Network quantization weights for int8 

B. Deep learning Network optimization for acceleration 

and low power 

After quantizing the network with different quantization, 
it is optimized for increasing the throughput by changing the 
Convolution and FC layer threads. dlprocessor optimization 
tool of Matlab : Deep learning toolbox is used to estimate the 
resource allocation for a given fps. 

C. Bit stream generation, deployment and verification:  

After optimizing the processor configuration for deep 
learning network the following steps are performed for 
generating the bitstream: 

1. Loading the optimized Deep learning processor 

model and generation of HDL code generation for 

the model that is the testbench/Device under 

test(DUT) 

2. Compilation of the model ‘testbench’ 

3. Generating HDL for ‘testbench/DUT’ and running 

HDL checks. Model complilation and PIR creation 

will be completed. 

4. Generating RTL code and IP Core 

5. Applying HDL optimization on the model 

‘testbench’ 

6. LUTMapToRAM is set to ‘on’ to map lookup 

tables to block RAM in hardware 

7. Create Project and build FPGA Bitstream.  

8. Once the bitstream is generated the network is 

deployed on to the FPGA with weights, biases 

being loaded using JTAG. 

9. The deployed network is tested with various inputs 

and accuracies are noted. 

VI. SYSTEM EVALUATION 

The following Tables 1and 2 shows the resource 
utilization of Deep learning Processor for both Single and 
int8 quantization.  

TABLE I.  ZCU102_SINGLE DEEP LEARNING PROCESSOR RESOURCE 

UTILIZATION 

DSPsBlockRAMLUTs(CLB/ALUT) 

-------------    -------------    ------------- 

Available       2520             912           274080 

-------------    -------------    ------------- 

Total        390( 16%)   586( 65%)     249893( 92%) 

Ref.Design3(  1%)      78(  9%)      35000( 13%) 

DLProcessor387(16%)  508( 56%)     214893( 79%) 

TABLE II.  ZCU102_INT8 DEEP LEARNING PROCESSOR RESOURCE 

UTILIZATION 

DSPs         BlockRAMLUTs( CLB/ALUT) 

-------------    -------------    ------------- 

Available       2520             912           274080 

-------------    -------------    ------------- 

Total 502(20%)536(59%)190099 (70%) 

Ref.Design3( 1%)78 ( 9%) 3500 (13%) 

DLProcessor499(20%)    458( 51%)    155099(57%) 

A. Simulation results after training Resnet50 with custom 

made ISL database:  

Fig7.Shows the training progress curve in terms of 
Training and Validation accuracies/losses while training the 
Resnet 50 with ISL gestures. Table1 shows accuracies of the 
Deep learning network during simulation and after 
deployment on to hardware using int8 and Single precision. 
Resource utilization along with performance is given in 
Table2. for the same. 

 

Fig. 7. Training and Validation Accuracy and loss graphs of Resnet50 

TABLE III.  COMPARISON OF ACCURACIES FOR SIMULATION AND 

HARDWARE IMPLEMENTATION USING INT8 AND SINGLE PRECISION 

S.No. ISL GESTURE 

Simulation 

Accuracy 

(RESNET 50) 

% 

FPGA Accuracy 

ZCU102_single 

(RESNET 50) % 

FPGA Accuracy 

ZCU102_int8 

(RESNET 50) % 

1 0 100 100 100 

2 1 100 100 100 

3 2 100 100 90 

4 3 100 100 90 

5 4 100 100 100 

6 5 100 100 90 

7 6 100 100 100 

8 7 100 100 70 

9 8 100 100 100 

10 9 100 100 100 

11 A 100 100 100 

12 Accident 50 50 50 

13 All the best 100 100 100 

14 Allergies 100 100 50 
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15 Asthma 100 100 90 

16 B 70 70 100 

17 Blood pressure 50 50 100 

18 Breathe 100 100 100 

19 Bye 100 100 100 

20 C 60 60 60 

21 Cancer 100 100 100 

22 D 100 100 100 

23 Diabetes 100 100 100 

24 Doctor 90 90 90 

25 E 100 100 100 

26 Ecg 100 100 100 

27 Emergency 60 60 80 

28 Excuse me 100 100 90 

29 F 100 100 100 

30 Fever 60 60 100 

31 G 90 90 90 

32 Good afternoon 0 0 60 

33 Good evening 100 100 100 

34 Good morning 50 50 50 

35 Good night 100 100 100 

36 H 100 100 100 

37 Headache 50 50 0 

38 Health insurance 90 90 80 

39 Heart attack 90 90 90 

40 Hello 0 0 30 

41 Hospital 30 30 70 

42 How are u 100 100 60 

43 I 0 0 0 

44 I am fine 100 100 100 

45 J 100 100 60 

46 K 100 100 100 

47 L 100 100 100 

48 M 50 50 50 

49 Medicine 80 80 60 

50 My name is 100 100 100 

51 N 100 100 70 

52 Nice to meet u 60 60 50 

53 No 50 50 80 

54 O 100 100 100 

55 Operation 100 100 100 

56 P 60 60 50 

57 Please 100 100 70 

58 Q 0 0 0 

59 R 100 100 70 

60 S 100 100 100 

61 Sorry 100 100 100 

62 Stomach ache 100 100 100 

63 T 100 100 20 

64 Thank you 100 100 100 

65 Thermometer 100 100 100 

66 U 100 100 100 

67 V 50 50 100 

68 Virus 100 100 100 

69 Vomit 100 100 100 

70 W 100 100 60 

71 Welcome 100 100 100 

72 What is ur name 0 0 100 

73 X 100 100 100 

74 Y 100 100 100 

75 Yes 100 100 80 

76 Z 100 100 100 

 

TABLE IV.  COMPARISON OF RESOURCE UTILIZATION AND 

PERFORMANCE INTERMS OF ACCURACIES, FPS AND LATENCY 

Parameters 
Software 

testing 
ZCU102_single ZCU102_int8 

Accuracy 84.07% 84.07% 82.89% 

FPS 1 FPS 0.8 FPS 2.7 FPS 

Latency in 

cycles 
   

LUT’s - 214893 155099 

DSP - 387 499 

RAM - 508 458 

VII. CONCLUSION: 

In this paper we have designed and deployed an 
optimized custom ResNet-50 network by using transfer 
learning for ISL recognition for doctor patient interface 
gestures on edge computing platform ZCU102. We have 
shown that FPGAs offer a highly flexible and customizable 
solution to address the increasing computational demands of 
complex neural networks while maintaining efficient 
resource utilization. 

Techniques to improve performance such as parallelism, 
memory hierarchy, and pipelining have been leveraged to 
achieve significant improvements in throughput and latency 
compared to CPU implementations. 

We could achieve a throughput of 2.7 fps as compared to 
0.6fps on 12th Gen Intel(R) Core(TM) i9-12900K, 3200 Mhz 
processor with a difference in accuracy of only 1.37%. The 
resource utilizationis also as low as only 20% utilization of 
DSPs, 51% of BRAM and 57% of LUTs while running on 
Xilinx Zynq Ultra Scale+ MPSoc SOC ZCU 102 Evaluation 
Kit. 

The developed model is deployable on embedded boards 
andfacilitates online and offline doctor-patient interactions, 
especially benefiting individuals with hearing impairments 
by overcoming communication barriers and enhancing 
accessibility to healthcare services. 

VIII. FUTURE WORK 

We intend to expand this research to encompass dynamic 
data gesture recognition tasks, focusing on interpreting video 
gestures. Our goal is to develop an optimized hardware 
accelerator with low power consumption tailored specifically 
for this application. 
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