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Abstract: Deep Convolutional Neural Network (CNN) based
methods have become more powerful for wide variety of
applications particularly in Natural Language Processing and
Computer vision. Nevertheless, the CNN-based methods are
computational expensive and more resource-hungry, and hence
are becoming difficult to implement on battery operated
devices like smart phones, AR/VR glasses, Autonomous Robots
etc. Also with the increasing complexity of deep learning
models like ResNet-50, there is a growing demand for efficient
hardware accelerators to handle the computational workload.
In this paper, we present the design and implementation of a
neural network accelerator tailored for ResNet-50 on the
ZCU102 platform using Field-Programmable Gate Arrays
(FPGAs) which offers and customizable solution to address this
challenge. We systematically investigate the design choices and
optimization strategies for deploying custom built ResNet-50
network trained for Indian Sign language translation of 76
gestures enacted and build in our labs for Doctor patient
interface on FPGA-based accelerators. In order to enhance
operational speed, we have employed various techniques,
including parallelism and pipelining, leveraging Depthwise
Separable Convolution. Furthermore, we have implemented
hierarchical memory allocation for different offsets using
threads. Additionally, we have utilized weight and data
quantization to optimize operational speed while minimizing
resource consumption, thus achieving low power consumption
while maintaining acceptable levels of inference accuracy. We,
evaluated our accelerated FPGA model against CPU interms of
various performance metrics viz: frames per second (fps),
Memory allocations, LUTs, DSPs and Block RAMs used. Our
findings underscore the superiority of FPGA-based
accelerators, as evidenced by achieving a frame rate of 2.7fps
on the Xilinx Ultra Scale ZCU102 platform with int8
quantization, compared to 0.8fps for Single precision. In
contrast, the CPU achieved a frame rate of 0.6fps. Notably, we
observed a minimal accuracy variation of only 1.37% with int8
quantization, while no accuracy variation was observed for
Single precision. Our implementation utilized 16 convolution
threads and 4 FC threads operating at 200 MHz for single
precision, whereas for int8, we employed 25 convolution
threads and 16 FC threads operating at 250 MHz.

Keywords: FPGA  accelerator, Data
optimization, Xilinx Ultra Scale ZCU102
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l. INTRODUCTION:

Video and image classification is basic problem in
computer vision. CNNs are led to great advances in image
classification accurately [1] Russakovsky et.al. Accuracies
are improving on ImageNet day by day with advances in
CNN based networks as compared to traditional methods.
Even though they achieve state-of-the-art performance,
CNN-based  methods  require  significantly — more

This work is licensed under a

103

Dr. Anitha Sheela Kancharla
Electronics & Communication Engineering
University College of Engineering Science & Technology
Hyderabad (JNTUHCEST)
Hyderabad, Telangana
kanithasheela@jntuh.ac.in’

computations and memory resources. Due of this, the
majority of CNN-based implementations require High end
servers.

CNN models, like the 5-layer LeNet, are suitable for
basic tasks like MNIST handwritten text recognition [18].
Because of their extreme complexity, state-of-the-art CNN
models for large-scale image classification can only be kept
in external memory. In this way, memory and bandwidth
especially for embedded system becomes a significant barrier
to CNN acceleration.

To address this issuewe focus on leveraging Field-
Programmable Gate Arrays (FPGASs) to accelerate deep
learning inference tasks [2, 3, 4, 5, 6, 7,8,9], specifically
targeting the deployment of a quantized ResNet-50 neural
network model trained on our custom built Indian Sign
language database for Doctor patient interface [10] on the
Xilinx Zyng UltraScale+ MPSoC ZCU102 Evaluation Kit.

We present the flow for single and int8precision data
guantization. Results show that only a 1.37% accuracy loss is
introduced with ResNet-50 model with 8 -bit weight and bias
quantization as compared to using Single precision.

We begin by initializing a pre-trained ResNet-50 network
and then quantizing [11] it using a deep learning quantizer
with FPGA execution environment specifications. This step
ensures that the network is optimized for deployment on
FPGA hardware while maintaining acceptable inference
accuracy. Subsequently, we calibrate the quantizer using ISL
dataset to fine-tune the quantization parameters for optimal
performance.

To facilitate deployment on the ZCU102 platform, we
configure the processor settings, specifying the bitstream and
synthesis tool, essential for FPGA synthesis. To further
optimize the hardware configuration for real-world
deployment we employ optimization techniques tailored to
the specific characteristics of the quantized ResNet-50 model.
This optimization process aims at finding the optimum
threads to be used both in Convolution and FC layer for
performing parallel depth wise convolution operations to
meet the throughput requirements in terms of frames per
second(fps), ensuring efficient utilization of FPGA resources
viz LUTs, DSPs, Block RAMS.

Finally, we utilize Xilinx Vivado as the synthesis tool and
configure the hardware target interface for JTAG
communication. Leveraging these tools and techniques, we
build the optimized processor configuration, ready for
deployment on the ZCU102 FPGA platform. We could
achievean accuracy of 84.07% for ZCU102 with single
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precisionwith a speed of 0.8 fps and an accuracy of 82.89%
for ZCU102_int8 at 2.7fps.

Il.  BACKGROUND

A. A deep CNN model

A conventional Convolutional Neural Network (CNN)
architecture comprises a cascade of filter channels, executed
sequentially. The model's parameters, commonly referred to
as "weights," are optimized during the training process. The
initial layer of the CNN processes an input image and
produces a set of global feature maps. Subsequent layers
analyze these feature maps from preceding layers, generating
more localized feature maps. Finally, a classifier layer,
typically a Fully Connected (FC) layer coupled with a
SoftMax layer, yields the probabilities associated with each
category that the input image potentially belongs to. The
CONV layer and FC layer represent two fundamental types
of layers within the CNN framework. Following CONV
layers, pooling layers are commonly incorporated to perform
down-sampling of the feature maps, thereby reducing their
dimensionality and mitigating sparsity. A typical CNN
example is shown in Figure 1.
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Fig. 1. Basic CNN structure from feature map

B. FPGA-BASED ACCELERATORS:

FPGA-based neural network accelerators are increasingly
preferred over CPUs due to their superior efficiency [12].
FPGASs exploit parallelism to accelerate computations by
mapping them onto parallel hardware, allowing multiple
DNN structures to execute concurrently on the FPGA. These
accelerators can achieve speedups of several orders of
magnitude compared to baseline CPUs [9]. FPGAs offer
designers the flexibility to implement only the necessary
logic in hardware tailored to the target application.
Architectures of FPGA-based DNN accelerators typically
comprise a host computer and an FPGA component
responsible for executing DNN algorithms.

FPGA-based DNN accelerators [13], can be broadly
categorized into two types: accelerators tailored for specific
applications such as speech recognition, object detection, and
natural language processing, and accelerators designed for
specific algorithms such as CNN and RNN. Additionally,
there exist accelerator frameworks equipped with hardware
templates. The design complexity of accelerators for the first
two categories is relatively low. In this study, we utilize an
accelerator for for Sign language recognition using pre-
trained ResNet50 network and transfer learning.

I1l. DATASET

For the creation of an Indian Sign Language (ISL)
recognition model, a dataset is constructed within the
anechoic chamber, funded by UGC-MRP, situated in the
ECE Department at JNTUHUCESTH. This dataset
encompasses 76 unique ISL signs associated with doctor-
patient interaction words and phrases. Each sign is depicted
through 50 individual gesture videos performed by 10
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individuals. Consequently, a total of 3800 videos have been
collected and utilized to enable comprehensive training for
optimal model performance.

No. of persons: 10

No. of videos per person: 5

Video details: frame width and height 19201080
Duration: 2 to 4sec, frame rate: 50 fps

IV. SYSTEM DESIGN

The image classification model ResNet50 will extract
features from each frame of the ISL (Indian Sign Language)
video for predicting the video labels. Video is converted into
frames and mediapipe python framework is applied to extract
knuckle points of the hands. These images are given to
ResNet 50 pre trained model for training 76 gestures. The
trained model is deployed onto ZCU102 board and tested for
accuracies of each gesture of ISL.

Figure 2(a) illustrates the system architecture specifically
tailored for the ZCU102 platform. Given the non-utilization
of the Heterogeneous Processing System (HPS) in this
particular design, only the FPGA segment is depicted. The
DDR4 memory module is directly linked to the FPGA
portion. Operating at a clock frequency of 250MHz, the
CNN  accelerator(ResNet50)  encounters  frequency
constraints primarily imposed by its adder tree configuration.
To facilitate the seamless transfer of weights and input
images from flash memory to DDR4 external memory, a
Vitis Al softcore microprocessor is instantiated. The
integration of an external memory interface IP alongside a
Modular Scatter-Gather Direct Memory Access (mSG-DMA)
IP is employed to effectively bridge the buffers in CNN
accelerator [14] and the FPGA memory.

CNN Accelerator
| mSG-DMA | m3EOMA
— controller
External Memory Interface « VITIS-Al
FPGA I Flash Control
| DDR4 Memory | | Flash |

Fig. 2. (a) FPGA System Architecture
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Fig2 (b) Architecture of CNN accelerator based on embedded FPGA
platform
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Fig 2(b) shows how acceleration on FPGA is performed.
It is done under two heads:

A. Data Quantization:

Accelerating large CNN models on embedded FPGA
platforms necessitates data quantization, a critical aspect
where achieving a concise representation with minimal loss
in accuracy is paramount. Utilizing fixed-point arithmetic
units on FPGAs proves advantageous due to their lower
resource  requirements compared to  floating-point
implementations. Contemporary CNN accelerators leverage
fixed-point arithmetic [3, 15, 16, 2] for enhanced
acceleration  while  maintaining inference  accuracy.
Additionally, reducing precision from 32-bit to 8-bit for both
data and weights yields significant reductions in memory
footprint and computational resources.

For instance, Chen et al. demonstrated that the area and
power consumption of a 16-bit multiplier are 0.164x and
0.136x respectively, compared to a 32-bit multiplier, using
65nm fabrication technology. Previous studies predominantly
adopted the 16-bit quantization strateqy [17, 15, 3, 4]. In [3],
Chen et al. observed that employing 16-bit numbers instead
of 32-bit ones resulted in a mere 0.26% increase in error rate
on the MNIST dataset. Similarly, in [4], 16-bit numbers were
employed during inference while 32-bit numbers were used
during training, showcasing a 0.01% reduction in accuracy
on the MNIST dataset.

With this understanding in our work, we have worked
withfloating single (16-bit) and fixed int8 for weight and bias
representation during inferenceto reduce computational
complexity and compared the resultant recognition
accuracies. However, while training we have used 64 bit
precision on GPU based computer since training will be done
offline and hence there is less constraint on speed or
computational resources.

B. Optimization of processor configuration:

The total number of multiplications to be used for
performing Standard Convolution operation is C x M2 x
M,2 xL,whereM,x My is image size, C is number of channels,
and output size will be Mpx M,,

In our FPGA processing we have used depth wise
separable convolution.

Depth wise separable convolution is performed using two
processes:

1.  Depth wise convolutions
2. Point wise convolutions

Depth wise convolution: Convolution will be applied to
single channel unlike standard convolution.So filter or kernel
size will be of size Mx M,x 1. If there are C channels in
input data then C such filters are required and hence the
output will be of sizeM,x M, xC. For depth wise
convglution total no. of multiplications required are C x M
x |\/|p

Depth wise convolution

Mf > Mp

Mf Mp

M, M, ----—---C Filters

M, M,
Fig. 3. Depthwise convolution operation

Point wise convolution: 1x1 convolution operation is
applied on C channels. Size of the filter is 1x1x C. Using L
such filters the output becomes M, x M, xL. Total number of
muzltiplications required for point wise convolution is Cx
Mp”x L

Point wise convolution
Iy
M < Mp
c c

Mp Mp

C C
............... L Filters
1 1

Fig. 4. Point wise convolution operation

Hence the total numberof multiplicationsrequired for
Depth wise separable convolution = depth wise +pointwise
multiplications

=C x My?x M2 + Cx M,” x L= Cx M,* (M? +L)

From above equations compared to standard convolution
depth wise convolution operations are less by a ratio of (1/L)
+(1UM).

The number of LUTS, BRAMS and DSPs required will
be increasing very heavily which in turn will increase the
power consumption if the convolution is applied on a single
channel as mentioned abovein depth wise convolution.
Hence to have a tradeoff between the speed of operations and
power consumption we have proposed to perform the depth
wise separable Convolutions using multiple threads so that a
bunch of convolutions will be performed serially and
remaining convolutions are done in parallel.

V. IMPLEMENTATION DETAILS

Fig. 5. . Zcul02 Development board image
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A. Quantization of Deep learning Network:

Quantization is a process to represent a continuous value
(floating point) expressed as a real number as an integer
multiple, which is a quantum of the smaller unit.

This technique is the most basic and easy way to use
trained models to make inferences quickly, reducing
operation costs, reduce calculation loads and reduce memory
consumption. However, the accuracies may suffer if the
guantization step size is very big.We have used int8 and
single precision for both computations and memory accesses
with lower precision data and compared the performance.

Figbshows the minimum and maximum values used by
the network for weights, biases and activations while using
int8.

234x5 table

Optinized Layer Name Network layer Name  Learnables / Activations  MinValue  MaxValue

Fig. 6. Network gquantization weights for int8

Deep learning Network optimization for acceleration
and low power

After quantizing the network with different quantization,
it is optimized for increasing the throughput by changing the
Convolution and FC layer threads. dlprocessor optimization
tool of Matlab : Deep learning toolbox is used to estimate the
resource allocation for a given fps.

C. Bit stream generation, deployment and verification:

After optimizing the processor configuration for deep
learning network the following steps are performed for
generating the bitstream:

1. Loading the optimized Deep learning processor
model and generation of HDL code generation for
the model that is the testbench/Device under
test(DUT)

2. Compilation of the model ‘testbench’

3. Generating HDL for ‘testbench/DUT’ and running
HDL checks. Model complilation and PIR creation
will be completed.

4. Generating RTL code and IP Core

5. Applying HDL optimization on the model
‘testbench’

6. LUTMapToRAM is set to ‘on’ to map lookup
tables to block RAM in hardware

7. Create Project and build FPGA Bitstream.

8. Once the bitstream is generated the network is
deployed on to the FPGA with weights, biases
being loaded using JTAG.

9. The deployed network is tested with various inputs

and accuracies are noted.
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VI. SYSTEM EVALUATION

The following Tables land 2 shows the resource
utilization of Deep learning Processor for both Single and
int8 quantization.

TABLE I. ZCU102_SINGLE DEEP LEARNING PROCESSOR RESOURCE

UTILIZATION
DSPsBlockRAMLUTS(CLB/ALUT)

Available 2520 912 274080

Total  390(16%) 586( 65%)
Ref.Design3( 1%)  78( 9%)
DLProcessor387(16%) 508( 56%)

249893( 92%)
35000( 13%)
214893( 79%)

TABLE II. ZCU102_INT8 DEEP LEARNING PROCESSOR RESOURCE

UTILIZATION

DSPs  BlockRAMLUTS( CLB/ALUT)
Available 2520 912 274080
Total  502(20%)536(59%)190099 (70%)

Ref.Design3( 1%)78 ( 9%) 3500 (13%)
DLProcessor499(20%) 458(51%) 155099(57%)

A. Simulation results after training Resnet50 with custom
made ISL database:

Fig7.Shows the training progress curve in terms of
Training and Validation accuracies/losses while training the
Resnet 50 with ISL gestures. Tablel shows accuracies of the
Deep learning network during simulation and after
deployment on to hardware using int8 and Single precision.
Resource utilization along with performance is given in
Table2. for the same.

S

|
r
-

Fig. 7. Training and Validation Accuracy and loss graphs of Resnet50

TABLE IlI. COMPARISON OF ACCURACIES FOR SIMULATION AND
HARDWARE IMPLEMENTATION USING INT8 AND SINGLE PRECISION
SAT:J?;S” FPGA Accm_Jracy FPGA Accm_Jracy
S.No. | ISL GESTURE (RESNET 50) ZCU102_single ZCU102_int8

% (RESNET 50) % | (RESNET 50) %
1 0 100 100 100
2 1 100 100 100
3 2 100 100 90
4 3 100 100 90
5 4 100 100 100
6 5 100 100 90
7 6 100 100 100
8 7 100 100 70
9 8 100 100 100
10 9 100 100 100
11 A 100 100 100
12 Accident 50 50 50
13 All the best 100 100 100
14 Allergies 100 100 50
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15 Asthma 100 100 90
16 B 70 70 100
17 | Blood pressure 50 50 100
18 Breathe 100 100 100
19 Bye 100 100 100
20 Cc 60 60 60
21 Cancer 100 100 100
22 D 100 100 100
23 Diabetes 100 100 100
24 Doctor 90 90 90
25 E 100 100 100
26 Ecg 100 100 100
27 Emergency 60 60 80
28 Excuse me 100 100 90
29 F 100 100 100
30 Fever 60 60 100
31 G 90 90 90
32 | Good afternoon 0 0 60
33 | Good evening 100 100 100
34 | Good morning 50 50 50
35 Good night 100 100 100
36 H 100 100 100
37 Headache 50 50 0

38 |Health insurance 90 90 80
39 Heart attack 90 90 90
40 Hello 0 0 30
41 Hospital 30 30 70
42 How are u 100 100 60
43 I 0 0 0

44 | am fine 100 100 100
45 J 100 100 60
46 K 100 100 100
47 L 100 100 100
48 M 50 50 50
49 Medicine 80 80 60
50 My name is 100 100 100
51 N 100 100 70
52 | Niceto meetu 60 60 50
53 No 50 50 80
54 o 100 100 100
55 Operation 100 100 100
56 P 60 60 50
57 Please 100 100 70
58 Q 0 0 0

59 R 100 100 70
60 S 100 100 100
61 Sorry 100 100 100
62 Stomach ache 100 100 100
63 T 100 100 20
64 Thank you 100 100 100
65 Thermometer 100 100 100
66 U 100 100 100
67 \% 50 50 100
68 Virus 100 100 100
69 Vomit 100 100 100
70 w 100 100 60
71 Welcome 100 100 100
72 |What is ur name 0 0 100
73 X 100 100 100
74 Y 100 100 100
75 Yes 100 100 80
76 4 100 100 100
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TABLE IV. COMPARISON OF RESOURCE UTILIZATION AND
PERFORMANCE INTERMS OF ACCURACIES, FPS AND LATENCY
Parameters Softv_vare ZCU102_single ZCU102_int8

testing
Accuracy 84.07% 84.07% 82.89%
FPS 1 FPS 0.8 FPS 2.7 FPS
Latency in
cycles
LUT’s - 214893 155099
DSP - 387 499
RAM - 508 458

VIlI. CONCLUSION:

In this paper we have designed and deployed an
optimized custom ResNet-50 network by using transfer
learning for ISL recognition for doctor patient interface
gestures on edge computing platform ZCU102. We have
shown that FPGAs offer a highly flexible and customizable
solution to address the increasing computational demands of
complex neural networks while maintaining efficient
resource utilization.

Techniques to improve performance such as parallelism,
memory hierarchy, and pipelining have been leveraged to
achieve significant improvements in throughput and latency
compared to CPU implementations.

We could achieve a throughput of 2.7 fps as compared to
0.6fps on 12th Gen Intel(R) Core(TM) i9-12900K, 3200 Mhz
processor with a difference in accuracy of only 1.37%. The
resource utilizationis also as low as only 20% utilization of
DSPs, 51% of BRAM and 57% of LUTs while running on
Xilinx Zyng Ultra Scale+ MPSoc SOC ZCU 102 Evaluation
Kit.

The developed model is deployable on embedded boards
andfacilitates online and offline doctor-patient interactions,
especially benefiting individuals with hearing impairments
by overcoming communication barriers and enhancing
accessibility to healthcare services.

VIII. FUTURE WORK

We intend to expand this research to encompass dynamic
data gesture recognition tasks, focusing on interpreting video
gestures. Our goal is to develop an optimized hardware
accelerator with low power consumption tailored specifically
for this application.
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