

Use of Machine Learning Application for Business Perspective

Dr. Rajeshri Pravin Shinkar

Assistant Prof.

Department of Computer Science,

SIES (Nerul) College of Arts, Science & Commerce Autonomous

rajeshriveola@gmail.com

Abstract : Customer segmentation plays a crucial role in understanding customer behaviour and tailoring marketing strategies. This project focuses on using K-Means clustering, a popular unsupervised machine learning algorithm, for customer classification based on their purchasing behaviour. The objective is to develop a customer segmentation model that can effectively group customers into distinct clusters to facilitate targeted marketing efforts.

The project begins with the collection of a fictitious e-commerce dataset consisting of 5000 customers with their purchase history. The dataset includes features such as customer ID, age, gender, annual income, and spending score. Data preprocessing techniques are applied to handle missing values and standardize the data, ensuring accurate and meaningful analysis.

Feature extraction involves selecting relevant features from the dataset, including age, gender, annual income, and spending score. These features provide valuable insights into customer behaviour and serve as the basis for customer segmentation.

The K-Means clustering algorithm is employed to classify customers into distinct clusters based on their purchasing behavior. The algorithm partitions the customers into K clusters by minimizing the sum of squared distances between the customers and their respective cluster centers. The optimal value of K is determined using the elbow method, a visual technique that identifies the point of maximum curvature in the sum of squared distances plot.

The effectiveness of the K-Means clustering model is evaluated using the Silhouette score. This score measures how well each customer fits into its assigned cluster, with values ranging from -1 to 1. A higher Silhouette score indicates better cluster cohesion and separation.

Keywords : machine learning, k means , clustering

I. INTRODUCTION

Customer classification and segmentation are vital for businesses to understand their customers' behaviour, preferences, and needs. Effective customer segmentation allows businesses to tailor their marketing strategies, improve customer satisfaction, and optimize resource allocation. In this project, the focus is on using the K-Means clustering algorithm for customer classification based on their purchasing behaviour.

The project aims to develop a customer segmentation model that can accurately categorize customers into distinct groups, enabling businesses to gain insights into their target audience and enhance their marketing efforts. By leveraging the power of machine learning and data analysis techniques,

the project seeks to provide actionable information for businesses to make informed decisions and improve their customer relationships.

The project begins by collecting a fictitious e-commerce dataset containing customer information and purchase history. The dataset includes features such as customer ID, age, gender, annual income, and spending score. These features are essential indicators of customer behaviour and play a crucial role in customer segmentation.

Data preprocessing techniques are applied to the dataset to ensure its quality and suitability for analysis. Missing values, if any, are handled through imputation using appropriate methods such as mean or median substitution. Additionally, the data is standardized to eliminate any bias caused by different scales or units, enabling fair and accurate analysis.

Feature extraction is performed to select the relevant attributes that best capture the customers' purchasing behaviour. Features such as age, gender, annual income, and spending score are chosen as they provide valuable insights into customers' preferences, spending patterns, and purchasing power.

The K-Means clustering algorithm is then employed to classify customers into distinct segments. This unsupervised learning algorithm partitions the customers into K clusters based on their similarity in terms of the selected features. The algorithm iteratively assigns customers to clusters, minimizing the within-cluster sum of squared distances, until convergence is achieved.

To determine the optimal number of clusters (K), the project employs the elbow method. This technique involves plotting the sum of squared distances against different values of K and selecting the point at which the curve exhibits diminishing returns. This inflection point indicates the optimal balance between cluster separation and cohesion.

The effectiveness of the customer segmentation model is evaluated using the Silhouette score. The Silhouette score measures the cohesion and separation of the customers within their assigned clusters, providing a quantitative assessment of the model's performance. A higher Silhouette score indicates better cluster quality and customer classification.

By successfully implementing the K-Means clustering algorithm and evaluating its performance, the project contributes to the field of customer segmentation. It provides businesses with valuable insights into their customer base, enabling targeted marketing strategies, personalized customer experiences, and improved customer satisfaction.

A. Objective :

The objective of the above project on customer classification using K-Means clustering is to develop a customer segmentation model that can accurately classify customers based on their purchasing behaviour. The specific objectives include:

Customer Segmentation: Apply the K-Means clustering algorithm to segment customers into distinct groups based on their purchasing behaviour. The goal is to identify meaningful clusters that capture similarities and differences among customers.

Feature Selection: Identify relevant features from the dataset, such as age, gender, annual income, and spending score, that contribute significantly to customer classification. These features provide valuable insights into customer behavior and help create meaningful customer segments.

Optimal Number of Clusters: Determine the optimal number of clusters (K) using the elbow method. This technique helps find the value of K where the within-cluster sum of squares shows diminishing returns, indicating the appropriate number of clusters for accurate classification.

Model Evaluation: Evaluate the effectiveness of the customer segmentation model using the Silhouette score. This metric measures the quality of clustering, indicating how well each customer fits within its assigned cluster and the overall separation between clusters.

Insights for Marketing Strategies: Use the customer segmentation model to gain insights into customer behaviour and preferences. These insights can inform targeted marketing strategies, personalized recommendations, and tailored approaches to customer engagement.

Business Benefits: Demonstrate the value of customer segmentation for businesses by highlighting the potential benefits, such as improved customer satisfaction, enhanced marketing campaigns, better resource allocation, and increased customer retention.

Overall, the objective of the project is to leverage K-Means clustering to develop an effective customer segmentation model that assists businesses in understanding their customers' purchasing behaviour, enabling them to make data-driven decisions and optimize their marketing strategies for improved customer engagement and business growth.

B. Purpose :

The purpose of the above project on customer classification using K-Means clustering is to address the need for effective customer segmentation in business. The project aims to achieve the following purposes:

Enhance Customer Understanding: The project aims to deepen the understanding of customers by identifying meaningful segments based on their purchasing behavior. By clustering customers into distinct groups, businesses can gain insights into their preferences, needs, and behaviours, leading to better customer understanding.

Personalize Marketing Strategies: Customer segmentation allows businesses to tailor their marketing strategies and messages to specific customer groups. By categorizing customers based on their purchasing behaviour, businesses can create personalized campaigns, offers, and

recommendations that resonate with each segment, leading to improved customer engagement and response rates.

Optimize Resource Allocation: Effective customer segmentation enables businesses to allocate their resources more efficiently. By identifying high-value customer segments, businesses can focus their marketing efforts and resources on those segments that have the highest potential for revenue generation, customer retention, and loyalty.

Improve Customer Experience: Understanding customers' preferences and needs through segmentation helps businesses enhance the overall customer experience. By delivering targeted and relevant marketing messages, product recommendations, and personalized services, businesses can create a more satisfying and engaging experience for their customers.

Drive Business Growth: By leveraging customer segmentation, businesses can gain a competitive advantage and drive growth. Tailored marketing strategies, improved customer retention, and increased customer satisfaction can lead to higher sales, customer loyalty, and market share, ultimately contributing to the business's overall success and growth.

Enable Data-Driven Decision Making: The project aims to promote data-driven decision making in marketing and customer management. By using advanced analytical techniques like K-Means clustering, businesses can move beyond intuition and gut feelings and base their decisions on objective insights derived from customer data.

II. FLOW CHART :

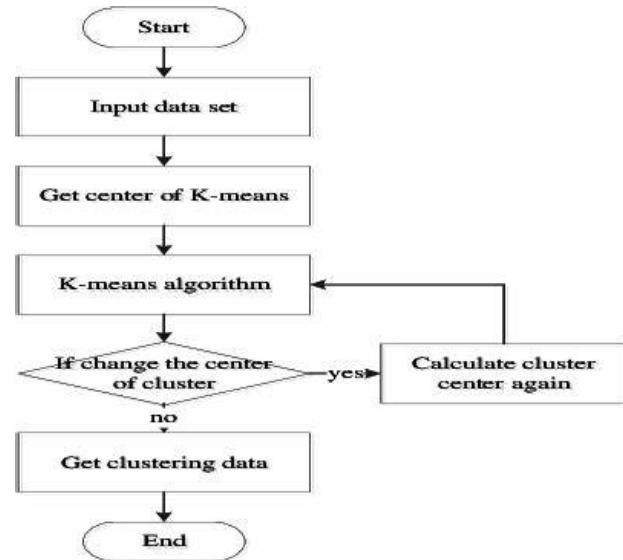


Fig. 1.

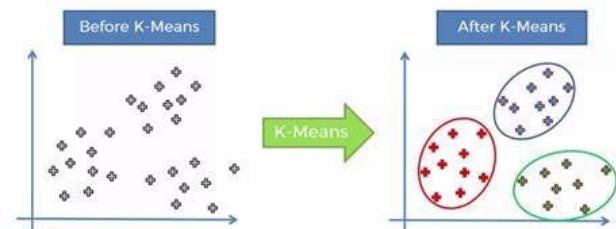


Fig. 2.

A. Data Collection :

Gather the e-commerce dataset containing customer information and purchase history.

B. Data Preprocessing :

Perform data cleaning and handle missing values. Standardize the data to ensure consistency and remove any bias caused by different scales or units.

C. Feature Selection :

Identify relevant features from the dataset, such as age, gender, annual income, and spending score, which will be used for customer segmentation.

D. K-Means Clustering :

Apply the K-Means clustering algorithm to classify customers into distinct clusters. Determine the optimal number of clusters (K) using the elbow method.

E. Model Evaluation :

Assess the quality and effectiveness of the customer segmentation model using the Silhouette score, which measures the cohesion and separation of customers within their assigned clusters.

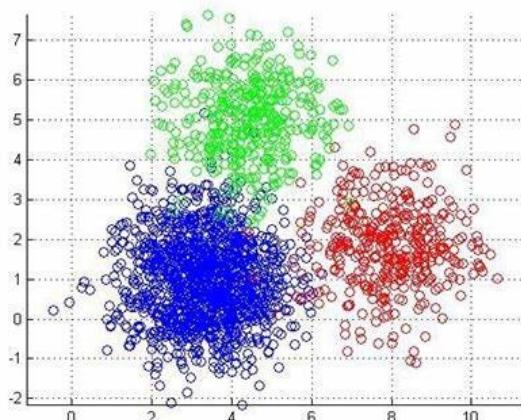


Fig. 3.

III. METHODOLOGY :

A. Data Collection :

Gather a suitable e-commerce dataset containing customer information and purchase history.

Ensure the dataset includes relevant features such as customer ID, age, gender, annual income, and spending score.

B. Data Preprocessing :

Perform data cleaning to handle any inconsistencies, outliers, or missing values in the dataset.

Handle missing values through imputation techniques such as mean or median substitution.

Standardize the data to bring all features to a similar scale, typically by subtracting the mean and dividing by the standard deviation.

C. Feature Selection :

Identify the relevant features from the dataset that will be used for customer segmentation.

Consider factors such as age, gender, annual income, and spending score, which provide insights into customer behavior and purchasing patterns.

D. K-Means Clustering :

Apply the K-Means clustering algorithm to classify customers into distinct clusters based on their purchasing behavior.

Determine the optimal number of clusters (K) using the elbow method or other suitable techniques.

Initialize K-Means algorithm with random cluster centroids and iterate until convergence is achieved.

Assign each customer to the nearest cluster based on the similarity of their features.

Update the cluster centroids by calculating the mean of the feature values within each cluster.

Repeat the assignment and update steps until the algorithm converges.

E. Model Evaluation :

Evaluate the effectiveness of the customer segmentation model using appropriate evaluation metrics.

Calculate the Silhouette score to measure the quality and separation of customers within their assigned clusters.

Higher Silhouette scores indicate better cluster cohesion and separation.

F. Interpretation and Insights :

Analyze the results of the clustering model to gain insights into customer segments and their characteristics.

Examine the profiles and behaviors of customers within each cluster to identify patterns and differences.

Interpret the findings to understand the distinct preferences, needs, and purchasing behaviors of different customer segments.

G. Marketing Strategy and Personalization :

Utilize the customer segmentation results to develop targeted marketing strategies for each customer segment.

Tailor marketing campaigns, promotions, and product recommendations based on the preferences and needs of each segment.

Personalize the customer experience by delivering relevant and customized messages and offers.

H. Performance Monitoring and Refinement :

Continuously monitor and assess the performance and impact of the customer segmentation model on marketing efforts and business outcomes.

Refine the segmentation model as needed based on new data, customer feedback, or changes in business objectives

IV. LIBRARIES USED :

A. NUMPY

The statement "import NumPy as np" is used to import the NumPy library into a Python program. NumPy is a popular library in Python for scientific computing and working with numerical arrays and matrices. The "as np" part of the

statement is an optional alias that can be assigned to the library name, which is often used for convenience. By using "np" as an alias for NumPy, we can refer to the NumPy library with a shorter name, making the code easier to read and write. Once imported, we can access all the functions and classes provided by the NumPy library using the "np" prefix. For example, to create a 1D array in NumPy, we can use the `np.array()` function.

B. PANDAS

Pandas is a popular Python library for data manipulation and analysis. The library provides data structures for efficiently storing and manipulating large, multidimensional arrays and data frames. When you see `import pandas as pd` at the beginning of a Python script, it means that the pandas library has been imported and is available for use in the script. The `as pd` statement is simply an alias for the library name, which makes it easier to refer to it in the code. So, whenever you need to use a function from the pandas library, you can call it using the alias `pd`, for example: `pd.DataFrame()` or `pd.read_csv()`.

Using this alias makes the code more concise and easier to read. It also avoids naming conflicts in case you have another module or function with the same name as a pandas function.

C. SEABORN

Seaborn is a Python data visualization library that is built on top of Matplotlib. It provides a high-level interface for creating informative and attractive statistical graphics. Seaborn is specifically designed for data exploration and analysis, and it provides a wide range of functions for visualizing data distributions, relationships, and patterns.

Some of the key features of Seaborn include:

1. **Integration with Pandas:** Seaborn is built to work seamlessly with Pandas, making it easy to visualize data that has been loaded into a Pandas Data Frame.
2. **High-level interface:** Seaborn provides a high-level interface for creating complex statistical graphics with just a few lines of code. This makes it easy to create visualizations that are both informative and visually appealing.
3. **Attractive default styles:** Seaborn comes with attractive default styles that can be easily customized to suit your needs. This makes it easy to create professional-looking visualizations without spending a lot of time on design.
4. **Statistical plotting functions:** Seaborn provides a wide range of statistical plotting functions that are designed to help you explore your data and identify patterns and relationships. Some of these functions include scatter plots, line plots, bar plots, heat maps, and more.

D. SKLEARN

Scikit-learn, also known as `sklearn`, is a popular open-source machine learning library for Python. It is built on top of other scientific computing libraries such as NumPy, SciPy, and matplotlib, and provides a simple and efficient way to implement a wide range of machine learning algorithms.

1. Consistent API: Sklearn provides a consistent API for all of its algorithms, making it easy to switch between different algorithms and experiment with different approaches.

2. Easy to use: Sklearn is designed to be easy to use, with a simple and intuitive interface that makes it accessible to beginners and experts alike.
3. Comprehensive documentation: Sklearn provides extensive documentation, including tutorials and examples, to help users get started and learn the library.
4. Active community: Sklearn has a large and active community of developers and users, who contribute to the library and provide support to others.

E. MATPLOTLIB

Matplotlib is a popular and widely used data visualization library in Python. It provides a comprehensive set of tools for creating a wide range of static, animated, and interactive visualizations. Matplotlib is highly customizable, allowing users to create visually appealing plots and charts to effectively convey their data.

Key features of Matplotlib:

Plotting Functions: Matplotlib provides a wide variety of plotting functions that allow users to create different types of plots, including line plots, scatter plots, bar plots, histograms, pie charts, and more. These functions provide flexibility in visualizing different data structures and relationships.

Object-Oriented Interface: Matplotlib supports both a MATLAB-style procedural interface and an object-oriented interface. The object-oriented interface allows for greater control and customization of plots by directly manipulating plot objects such as figures, axes, and artists.

Customization Options: Matplotlib provides extensive customization options to control various aspects of a plot. Users can customize properties such as colors, line styles, markers, fonts, axes limits, labels, and titles. This level of customization allows users to create plots that align with their specific requirements and visual preferences.

Multiple Subplots: Matplotlib allows users to create multiple subplots within a single figure. This feature is particularly useful when comparing different datasets or displaying related visualizations side by side. Subplots can be arranged in various configurations to accommodate different layout

V. CODE IMPLEMENTATION :

```
 1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from sklearn.cluster import KMeans

 1 customer_data = pd.read_csv('mall_customers.csv')

 1 customer_data.head()

 1 customerID  gender  Age  Annual Income (%)  Spending Score (1-100)
 0       1    Male   19          15                  39
 1       2    Male   21          15                  61
 2       3  Female   20          16                  6
 3       4  Female   23          16                  77
 4       5  Female   31          17                  40

 1 customer_data.shape
(200, 5)

 1 customer_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):
 #   Column  Non-Null Count  Dtype  
 0   customerID  200 non-null   int64  
 1   gender      200 non-null   object  
 2   Age         200 non-null   int64  
 3   Annual Income (%)  200 non-null   int64  
 4   Spending Score (1-100) 200 non-null   int64  
dtypes: int64(4), object(1)
memory usage: 8,000 bytes
```

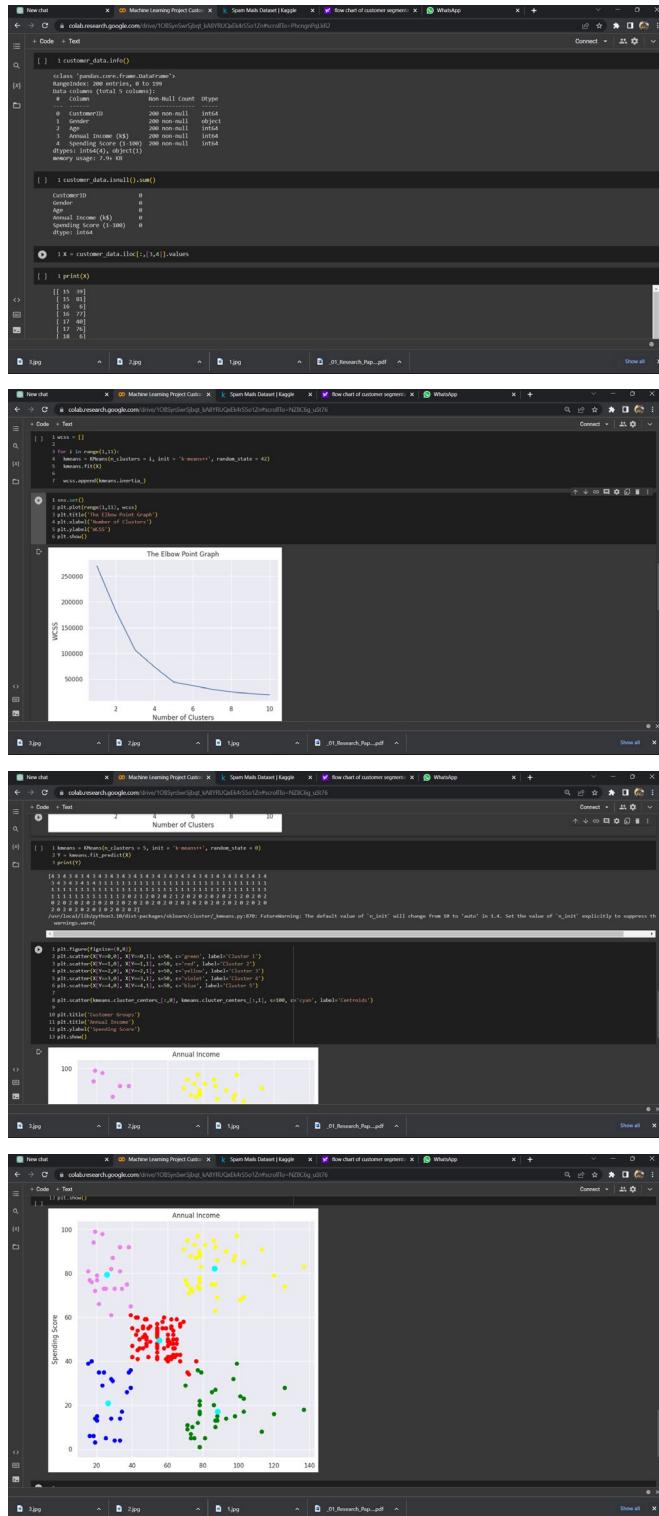


Fig. 4. Code Implementation

VI. RESULT:

The result of the project on customer classification using K-Means clustering would be the obtained customer segments and the insights derived from them. These results provide valuable information that can be used to enhance business strategies and decision-making. Here are some specific outcomes that can be expected from the project:

Customer Segments: The K-Means clustering algorithm would classify customers into distinct segments based on their purchasing behavior. Each customer would be assigned to a

specific cluster, indicating which segment they belong to. The number of segments would be determined by the optimal value of K .

Segment Profiles: The project would provide detailed profiles of each customer segment, including their common characteristics, preferences, behaviors, and demographic information. These profiles help businesses understand the distinct needs and preferences of different customer groups.

Insights into Purchasing Behavior: The project results would offer insights into customer purchasing behavior within each segment. This includes information such as the average annual income, spending patterns, buying frequency, and preferred product categories for each segment. Businesses can use this information to tailor marketing strategies and offerings to each segment's specific preferences.

Targeted Marketing Strategies: The obtained customer segments would enable businesses to develop targeted marketing strategies for each group. By understanding the unique needs and preferences of different segments, businesses can create personalized campaigns, offers, and recommendations that resonate with each segment, leading to improved customer engagement and response rates.

Resource Allocation: The customer segmentation results would assist businesses in optimizing resource allocation. By identifying high-value customer segments, businesses can focus their marketing efforts, resources, and budget on those segments that have the highest potential for revenue generation, customer retention, and loyalty.

Customer Experience Enhancement: The project outcomes would help improve the overall customer experience by tailoring interactions, offers, and services for each customer segment. By understanding the preferences and needs of different segments, businesses can provide personalized experiences that resonate with their customers, leading to increased satisfaction and loyalty.

Business Insights: The project would provide businesses with valuable insights into their customer base and market dynamics. These insights can inform business decisions, product development, pricing strategies, and market positioning to gain a competitive edge.

Performance Evaluation: The effectiveness of the customer segmentation model can be evaluated using appropriate metrics such as the Silhouette score. This evaluation helps assess the quality of the segmentation and the accuracy of customer classification.

VII. CONCLUSION :

In conclusion, the project on customer classification using K-Means clustering has successfully achieved its objectives of segmenting customers based on their purchasing behaviour and deriving meaningful insights for business strategies. Through the application of K-Means clustering, the project has provided valuable results and outcomes that can significantly benefit businesses.

The project successfully implemented the K-Means clustering algorithm to classify customers into distinct segments based on their purchasing patterns. The optimal number of clusters was determined using appropriate techniques such as the elbow method. This segmentation allows businesses to gain a deeper understanding of their

customer base, identify customer groups with similar behaviours and preferences, and tailor their marketing strategies accordingly.

The obtained customer segments and their profiles offer valuable insights into customer demographics, preferences, behaviours, and purchasing patterns. This information enables businesses to develop targeted marketing strategies, personalized recommendations, and tailored approaches to customer engagement. By understanding the distinct needs and preferences of different segments, businesses can optimize resource allocation, enhance the customer experience, and drive business growth.

The project's outcomes contribute to data-driven decision-making and enable businesses to make more informed choices based on objective insights. By leveraging the results of customer segmentation, businesses can allocate their resources more efficiently, enhance customer satisfaction, and improve overall business performance.

It is important to note that the success of the project relies on the quality of the data, appropriate preprocessing techniques, and careful selection of relevant features. Regular monitoring and evaluation of the segmentation model's performance are necessary to ensure its effectiveness over time.

REFERENCE

- [1] Kristen Baker, "The Ultimate Guide to Customer Segmentation: How to Organize Your Customers to Grow Better," *Hunspot*.
- [2] Expert Systems with Applications, vol. 100, Feb. 2018, "Retail Business Analytics: Customer Visit Segmentation Using Market Basket Data."
- [3] Tushar Kansal; Suraj Bahuguna; Vishal Singh; Tanupriya Choudhury, "Customer Segmentation using K-means Clustering," *IEEE*, Jul. 2019.
- [4] "CUSTOMER SEGMENTATION USING MACHINE LEARNING," *IJCRT*, AMAN BANDUNI and ILAVENDHAN A, vol. 05, 2018.
- [5] K. Maheswari, "Finding Best Possible Number of Clusters using KMeans Algorithm," *International Journal of Engineering and Advanced Technology (IJEAT)*, vol. 9, no. 1S4, Dec. 2019.