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Abstract—This research focuses on Artificially Intelligent driv-
ing techniques that are being used to train several machine-
learning models to achieve complete human-like driving skills.
Artificially Intelligent driving consists of training a machine to
drive on a provided path to any vehicle (a car in this case)
while simultaneously following all the traffic routes, providing
passenger comfort and vehicle and passenger safety. In this
research, since most of the available artificially intelligent driving
models are set to work upon a predetermined path provided by
the user and can only follow that path, I intend to further this
model by providing a completely random path to the model and
then evaluate its efficiency, the resources it requires to complete
its whole path to training the model so that it can adapt to
the randomly provided path with much faster speed and more
accuracy as compared to traditional Artificially Intelligent vehicle
driving models.

Index Terms—Machine Learning, Reinforcement Learning, Q-
learning, and Deep Learning

I. INTRODUCTION

This dissertation is completely based on the mechanics of
Reinforcement learning (RL). This is a branch of artificial
intelligence that focuses on training agents to make decisions
and operate in a way that will maximize the benefits that
will accrue over time. It is based on the concept of learning
through trial and error, where agents interact with the envi-
ronment, receive feedback in the form of rewards, and learn
to improve their decision-making strategies over time. RL
algorithms employ exploration and exploitation techniques to
find optimal policies that lead to the highest possible rewards.
RL has diverse applications and has been successful in training
agents to play games, control autonomous systems, and solve
complex decision-making problems.[1], [2], [3], [4]

A. Machine Learning

One of the thesub-fieldss of artificial intelligence called
machine learning involves teaching machines to recognize
patterns in data and then use those patterns to forecast or make
decisions. Machine learning is frequently used in real-world
applications, including image identification, natural language
processing, and predictive analytics. There exist various types
of machine learning, but we will focus on only 3 see (Fig 1.1.
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Fig. 1. Types of Machine Learning

o The most popular kind of machine learning, Supervised
learning, involves developing an algorithm using a labeled
data set. The intention is to train the algorithm to spot
patterns in the data so that it can make precise predictions
about future instances of unlabeled data. Examples of
supervised learning include predicting the price of a
house based on its features or classifying images of
animals based on their characteristics.

o Unsupervised learning, on the other hand, is used when
there is no labeled data available to the system. The goal
is to determine or identify patterns or clusters in the
data without any prior knowledge of what those patterns
might represent. This type of learning is often used in
exploratory analysis or anomaly detection.

« Reinforcement learning involves educating a computer
algorithm to make choices based on data from its sur-
roundings. The algorithm learns to take actions that
maximize a reward signal while minimizing negative
outcomes. This type of learning is often used in robotics,
game playing, and autonomous vehicles..

In conclusion, machine learning is an effective tool for fore-
casting and making choices based on patterns discovered from
data.

B. History of Reinforcement Learning

Since their creation in 2006, deep learning (DL) algorithms
have been widely used by both researchers and businesses.
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Since the spectacular victory over the ImageNet classification
challenge in 2012, supervised deep learning has seen suc-
cess after the triumph. Many academics are currently using
this novel and potent family of algorithms to address a
wide range of novel challenges, including how to effectively
train intelligent behavior in reward-driven complex dynamic
problems. Over here agent-environment interaction is defined
through observation, Because learning environments have the
Markov property, they can be thought of as Markov decision
problems, which makes RL approaches possible Games had to
be included in this group of environments. Inputs (the game
world), actions (game controllers), and assessment criteria
(game score) are often understood and simulated in a game-
based environment. Classic RL algorithms from the 1990s
could now tackle exponentially more complicated tasks, like
games, over time, navigating across vast decision spaces,
thanks to the development of DL and increased computer
power. [2], [3], [5]

C. Introduction to Reinforcement Learning

A learning method similar supervised and unsupervised
learning is reinforcement learning. Instead of learning from a
labelled data set (or one that is not labelled), you learn from the
errors that a reward system generates. We may say the agent
gains knowledge through experience. To achieve an ideal state
or goal, an agent (the car) see figure (Fig.2) interacts with an
environment (the world). The agent acts in order to interact.

.[6]
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Fig. 2. Types of Machine Learning

« When the action is positive, the reward will be greater.
« When the action is negative like going on the sidewalk
or hurting other cars then the reward will be lesser.

The goal of the agent is to choose the right action that gets
the biggest reward.

« In this situation, the agent can predict future states and
behaviors and decide which course of action to take right
away to maximize potential rewards.

Now we can calculate the total reward based on all
rewards.

When using reinforcement learning, you can create an
environment and optimize the driving policy using a
reinforcement learning algorithm.
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D. Implementation of Reinforcement Learning

The implementation of Reinforcement Learning can be done
in three ways: -

o Value-Based: The main goal of a value-based reinforce-
ment learning strategy is to maximize a value function
Policy-based: The objective of a policy-based RL ap-
proach is to create a policy where every action you do
now will help you reap the greatest benefits in future.
Two types of policy-based methods are:

Deterministic: The policy results in the same action for
any state.

Stochastic: Every course of action has a chance of hap-
pening

Model-Based: In this reinforcement learning method, a
virtual model must be created for each environment. The
agent acquires the abilities required to function in that

setting.
Reinforcement
learning
Model-based Model-free
methods methods
/ \
Value-based Policy-based
methods methods

Fig. 3. Approaches to Reinforcement Learning

E. Q — Learning

Q-learning is a values-based learning algorithm in rein-
forcement learning Q-Values or Action-Values: Q-values are
defined for states and actions. Q (S, A) is an estimation of the
likelihood that taking action at state S would be good. As we
will see in the following sections, the TD- Update rule will be
used to iteratively compute this estimation of Q (S, A). De-
pending on the actions it does and the environment it interacts
with, an agent transitions from one state to another multiple
times during the duration of its existence, starting from a start
state. Every time a transition occurs, the agent from the initial
state acts, detects a reward from the environment, and then
transitions to the following state. If the agent ever enters one
of the ending states at any moment, there can be no more
transitions see Fig (1.6). [7], [8], [9]

As seen below, the Temporal Difference or TD-Update rule:
- This update rule to gauge the Q value is applied at each
time step of the agent’s interaction with the environment. The
following defines the terminology used: S: Current state of the
agent. A: The current action was chosen by a policy. S’: The
agent’s final destination state. A: Choose the action with the
highest Q-value in the following state using the most recent
Q-value estimation as the next best action. R: The reward that
is now being given as a result of the surroundings. The factor
for Discounting Future Rewards. Future incentives must be
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Fig. 4. Q — Learning

discounted since they are less valuable than current rewards.
The discounting rule also applies in this case since the Q-value
is an estimation of expected rewards from a state. Length of
each update to the Q estimation (S, A).

F. Deep Q — Learning with Neural Networks

The Q-learning algorithm and deep neural networks are
combined in Deep Q-Learning (DQL), a potent reinforce-
ment learning method. In complicated situations with high-
dimensional state spaces, it enables agents to learn the best
course of action.

As it interacts with its surroundings during training, the
agent gathers experiences in the form of state-action-reward-
next state tuples and updates the Q-network with them. By
reducing the difference between the target and predicted Q-
values, which are calculated using a Bellman equation that
takes into account the current reward and the maximum Q-
value of the following state, the update is carried out. Ex-
ploration and exploitation should be balanced, DQL typically
employs an exploration strategy, such as epsilon-greedy, which
chooses random actions with a certain probability to encourage
exploration of the environment. [10], [11], [12], [13], [14]

Reward |

Agent

State Take

action

Environment

parameter 6

Observe state

Fig. 5. Deep Q — Learning with Neural Networks

II. LITERATURE REVIEW

A branch of machine learning called reinforcement learning
(RL) focuses on making decisions in challenging situations. A
car with artificial intelligence can sense its surroundings and
function on its own. There is never a need for a human driver
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or passenger, or even for someone to be inside the vehicle.
Artificially intelligent vehicles are capable of doing everything
a skilled human driver can accomplish while operating any
place a conventional vehicle can go. Many applications of
RL have emerged in recent years, including robotics, game
playing, finance, and healthcare. A car with artificial intel-
ligence can sense its surroundings and function on its own.
There is never a need for a human driver or passenger, or
even for someone to be inside the vehicle. The artificially
intelligent vehicles are capable of doing everything a skilled
human driver can accomplish while operating any place a con-
ventional vehicle can go. Driverless cars can recognize objects,
analyze circumstances, and make decisions based on object
detection and object classification algorithms. Deep learning
is a component of machine learning or the advancement of
machine learning. Deep learning draws its inspiration from
how the human brain processes information. To extract more
exact information, it makes use of complex neural networks
that continuously evaluate and learn from the incoming data.
While supervised learning employs tagged training data, unsu-
pervised learning uses less structured training sources. Either
of one, supervised or unsupervised deep learning is possible.
In contrast to machine learning, deep learning requires a large
amount of computing power and training data to create more
accurate results. These algorithms are inspired by the human
brain, indicating that they acquire knowledge through their
experiences. NVIDIA, a deep learning expert, claims that if a
DNN is exposed to photos of a stop sign in various settings,
it can learn to recognize stop signs on its own.[15], [16], [17],
[18] Deep reinforcement learning is a new set of the latest and
advanced algorithms that make use of batch calculations on
graphics processing units (GPUs), reward/punishment costs,
and the enormous computational power of modern machines
(DRL). It was shown that neuroevolutionary methods might be
used to analyze pixel data directly. The most notable advance
in the age of DRL a year later was Google’s creation of
the Deep-Q-Network (DQN). This cutting-edge system might
identify patterns in pixels in an unknowable environment and
learn actions from them. However, early on there were several
problems with neural networks serving as approximate meth-
ods (correlated inputs, fluctuating policies, huge gradients,
etc.) that were eventually resolved by the organic growth of
the larger DL field. For instance, a Machine Learning (ML)
model’s training process may be impacted by the correlation
between its inputs, which frequently results in underfitting
or overfitting. The use of numerous value functions or huge
gradients by deducting a previously learned baseline has been
used to solve other difficulties, such as policy degradation,
which can result from value function overestimation. Trust
region algorithms, such as relative policy optimization (PPO)
or trust region policy optimization (TRPO), where the policy
is changed, are other methods of addressing these instabilities.
After testing with ATARI 2600 games at first, other trials
with more difficult games were also conducted (DOTA2,
Starcraft, Chess, Go, etc.). Last but not least, they showed
that DQN-type algorithms could beat any conventional RL
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algorithm, defeating the paid professional human players who
participated in the Atari game titles. DQL has demonstrated
significant success in various domains, including playing Atari
games and achieving superhuman performance. By employing
deep neural networks, DQL can handle complex environments
with high-dimensional input spaces and learn effective policies
by approximating the Q-values.

III. IMPLEMENTAION OF DEEP - Q LEARNING
A. Working principle behind Deep Q — Learning

The working principle behind Deep Q-Learning (DQN) is to
combine the Q-learning algorithm with deep neural networks
to handle high-dimensional state spaces. The Q-values for each
state-action pair are estimated by DQN using a deep neural
network as a function approximator. The following explains
the working principle of DQN:

« State and Action Representation: DQN represents states
and actions using high-dimensional vectors or images.
These representations capture the raw sensory inputs of
the environment.

DQN utilizes a deep neural network, often a convolutional
neural network (CNN), as a function approximator to
estimate the Q-values. The state representation is sent
into the neural network; it then generates the Q-values
for each possible action.

Experience Replay: DQN incorporates experience replay,
which entails putting the agent’s experiences in a replay
buffer (state, action, reward, and future state). A mini-
batch of events is randomly selected from the replay
buffer during learning. to decorrelate the training data and
break the temporal dependencies between consecutive
experiences.

Q-Value Update: The DQN algorithm follows the Q-
learning update rule to update the Q-values based on
the observed reward and next state. However, instead of
directly altering the Q-values after each step, DQN uses
the neural network to Q-values for the current condition
should be predicted. Selecting the action with the highest
Q-value for action selection, following an exploration-
exploitation strategy such as epsilon-greedy.

Loss Function and Training: To determine the difference
between the desired and desired Q-values, DQN applies
a loss function. The goal Q-values are calculated by
factoring in both the maximum predicted Q-value for
the subsequent state and the immediate benefit. Gradient
descent is used to train the neural network to reduce loss
and increase the precision of the Q-value predictions.
Exploration vs. Exploitation: DQN balances exploration
and exploitation by using an epsilon-greedy policy. Ini-
tially, the agent explores the environment by taking
random actions with a high exploration rate (epsilon).
Over time, the exploration rate is gradually reduced to
favor the exploitation of the learned Q-values.

Iterative Learning: DQN iteratively repeats the process
of taking actions, observing rewards and next states,
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updating the Q-values, and modifying the weights of the
neural network. The neural network learns to estimate the
ideal Q-values with different state-action pairs through
this repeated process. DQN provides effective learning in
high-dimensional state spaces by fusing using deep neural
networks and the Q-learning algorithm. DQN has proved
successful in resolving complicated reinforcement learn-
ing challenges, including playing Atari games, robotic
control tasks, and more.

1) Algorithm of Deep Q — Learning: Algorithm of Deep Q
— Q-Learning The algorithm behind Deep Q-learning (DQL)
combines the Q-learning algorithm with Deep Neural Net-
works (DNN) to manage state spaces with huge dimensions.
Here’s a step-by-step explanation of the Deep Q-learning
algorithm:

Initialize replay memory: Create a replay memory buffer
to store the agent’s experiences. Experiences consist of
tuples (state, action, reward, next state) and are collected
during the agent’s interaction with the environment.
Initialize Q-network: Set up a deep neural network (often
a convolutional neural network) as the Q-network. This
network takes the state representation as input and outputs
the Q-values for all possible actions.

Initialize target network: Create a separate target network
that has the same architecture as the Q-network but with
frozen parameters. This network is periodically updated
with the weights from the Q-network to provide stable
target Q-values during training.

Exploration vs. exploitation: Determine the action selec-
tion strategy. Initially, the agent explores the environment
by taking random actions or using an exploration strategy
like epsilon-greedy. As training progresses, the agent
gradually shifts towards exploiting the learned Q-values
more often.

Repeat steps 6-10 for each episode or time step:
Observe current state: Receive the current state from the
environment.

Action selection: Select a move made with the
exploration-exploitation of a plan based on the current
situation and the Q-network’s predictions.

Execute action and observe reward, next state: Apply the
selected action to the environment, receive the reward,
and observe the next state.

Store experience: In the replay memory, store the expe-
rience tuple (state, action, reward, future state).

Sample mini-batch and update Q-network: Pick a few
memories from the replay memory to sample. Utilize the
target network and the Q-learning revised rule to calculate
the target Q-values.

Update the weights of the Q-network by minimizing the loss
between the predicted Q-values and the target Q-values.

« Periodically update the target network: After a fixed
number of steps or episodes, update the weights of the
target network by copying the parameters from the Q-
network.



Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 1.F-5.11

o Repeat steps 5-11 until convergence or a predefined
number of iterations.

When estimating the Q-values, a deep neural network can
be used as a function approximator and give the agent the
ability to work with high-dimensional state spaces is the basic
idea behind DQN. Through the use of experience replay and a
different target network, DQN stabilizes the learning process
and improves the efficiency of Q-value updates. Over time,
the DQN algorithm discovers how to approximate the ideal
Q-values for different state-action pairs and enables the agent
to make better decisions in complex reinforcement learning
problems.

2) : sectionFlowchart of Reinforcement Learning The fol-
lowing describes the complete process flow of the reinforce-
ment learning techniques followed universally along with a
diagrammatic illustration see Fig (3.1).

« Start: Begin the reinforcement learning process.

« Initialize: Set up the initial state of the agent and the
environment.

« Select Action: Use the current state and a policy (e.g.,
epsilon-greedy) to choose an action for the agent to take.

« Execute Action: Apply the selected action to the environ-
ment.

« Observe Reward and Next State: Receive a reward signal
from the environment based on the action taken and
observe the next state.

o Update Q-values: Use the observed reward and next state
to update the Q-values of the current state-action pair
using the Q-learning or deep Q-learning algorithm.

o Check for Termination: Determine if the episode or task
has terminated based on specific criteria (e.g., reaching a
terminal state, or exceeding a time limit).

o If Termination Condition Met: Proceed to step 11 (End).
Otherwise, continue to step 9.

« Update State: Set the current state to the observed next
state.

» Repeat Steps 3-9: Continue the process by selecting a
new action based on the updated state.

o End: Terminate the reinforcement learning process.

3) Dataflow diagram of Reinforcement Learning: This data
flow diagram represents the flow of information and control
between the different steps involved in the reinforcement
learning process. The arrows indicate the direction of data
flow, and the rectangles represent the steps or processes. The
following are the features and methods that can be associated
with each step:

« Initialize: This step involves setting up the initial state of
the agent and the environment. Relevant features could
include initializing the agent’s state variables and the
environment’s initial conditions.

o Select Action: This step involves choosing an action for
the agent to take based on the current state and a policy.
Relevant features could include the state representation,
the policy used (e.g., epsilon-greedy), and methods for
action selection.

84

Volume X and Issue I

Start

Initialize

Select Action

Execute Actior

Observe Reward
and Next Statg

‘ Update Q-valud

w

Repeat

| Check for Termination }—‘ Steps 3-9

Termination No
Condition Met

Yes

End

Fig. 6. Flowchart of Reinforcement Learning

Execute Action: This step applies the selected action
to the environment. Relevant features could include the
action taken by the agent and the methods for applying
the action to the environment.

Observe Reward and Next State: This step involves
receiving a reward signal from the environment and
observing the resulting next state. Relevant features could
include the reward value received and the observed next
state.

Update Q-values: This step updates the Q-values of the
current state-action pair based on the observed reward and
next state. Relevant features could include the Q-value
table or function, the update algorithm (e.g., Q-learning,
deep Q-learning), and the methods for updating the Q-
values.

Check for Termination: This step determines if the
episode or task has terminated based on specific criteria.
Relevant features could include the termination condi-
tions to be checked and the methods for evaluating these
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conditions.

o Update State: This step updates the current state to the
observed next state. Relevant features could include the
state variables and the methods for updating the state.

Enviroament
Action

Reward Mate
L 3

Agent ]

Deployed system ‘

Data collection

Policy training

N

New policy

Fig. 7. Dataflow Diagram of Reinforcement Learning

IV. PROPOSED MODEL
A. Working Principle of the proposed model

In this work, we want to run our trained model on custom
tracks and simultaneously achieve a higher accuracy in a short
amount of iterations/times. Due to the higher complexity of
neuro evolution techniques which are most preferred over
other supervised learning techniques and also due to the
difficult implementation of the above technique in Python
code, we are going to provide a simpler and more precise
solution through the concepts of Q- Q-learning and further
contribute to the problem by working upon Deep Q-Learning
techniques in Python. Also, we are going to run our models
on multiple test cases to ensure higher fitness and accuracy.

The following are the objectives of this research work: -

« Implementation of deep g-learning technique in this re-

search work.

« To achieve maximum efficiency, with a given throughput

and least delay possible.

« To be able to complete a user-given track with no

collision and provide better accuracy.

This research work focuses on an intelligent driving tech-
nique that is being used to train several machine-learning
models to achieve complete human-like driving skills. Arti-
ficially Intelligent driving consists of training a machine to
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drive on a provided path to any vehicle (a car in this case)
while simultaneously following all the traffic routes, providing
passenger comfort and vehicle and passenger safety. In this
research, since most of the available artificially intelligent
driving models are set to work upon a predetermined path
provided by the user and can only follow that path, I intend
to further this model by providing a completely random path
to the model and then evaluate its efficiency, the resources it
requires it to complete its whole path to training the model so
that it can adapt to the randomly provided path with much
faster speed and more accuracy as compared to traditional
Artificially Intelligent vehicle driving models.

o Train the pre-existing model to be able to drive on a
random path as quickly as possible utilizing as little time
and resources as possible.

To provide better accuracy for the newly trained model
using deep g-learning techniques and supervised rein-
forcement learning models.

To provide a well-trained model that can greater through-
put and better efficiency with a certain amount of accu-
racy.

This research work focuses on intelligent driving techniques
that are being used to train several machine-learning models
to achieve complete human-like driving skills. Artificially
Intelligent driving consists of training a machine to drive
on a provided path to any vehicle (a car in this case)
while simultaneously following all the traffic routes, providing
passenger comfort and vehicle and passenger safety. In this
research, since most of the available artificially intelligent
driving models are set to work upon a predetermined path
provided by the user and can only follow that path, I intend
to further this model by providing a completely random path
to the model and then evaluate its efficiency, the resources it
requires it to complete its whole path to training the model so
that it can adapt to the randomly provided path with much
faster speed and more accuracy as compared to traditional
Artificially Intelligent vehicle driving models. The process
involved in this proposed model and its implementation is
divided into the following sub-sections discussed below: -

« Data Collection — This is the initial or the first step which
requires the collection of data from multiple sources
such as websites, articles, research papers, and journals.
This data should be relevant to the solution that the
aforementioned model is created for. It should be of
a higher quality and properly formatted so that it can
be processed easily by the enforced algorithm. In this
project, I am going to use the following data for creating
my model. An Environment — I am going to create
the environment in the Pygame library used in Python
programming language. The Agent — For applying rein-
forcement learning, I am going to use a small image of a
car that is going to be my agent and an image of a track
on which the model is going to be trained. The Model —
The model that is going to be used will be created using
the Keras library used in Python programming language.
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o Data Preprocessing - This is the second step in the discussed in Chapter 5 along with other observations and

deep learning process. It involves cleaning the data and
preparing it for use in the deep learning algorithms. This
includes removing any irrelevant data, normalizing the
data, and transforming the data into a format that can
be used by the algorithms. Data preprocessing is an
important step as it ensures that the data is in the correct
format and contains no errors.

Model selection is the third step in the deep learning pro-
cess. It involves selecting the appropriate deep-learning
model for the problem at hand. This includes selecting
the type of model, such as a convolutional neural network
or a recurrent neural network, as well as the parameters
of the model. The model should be chosen based on the
data and the problem that needs to be solved.

For this research project, I am going to use an h5 model
created in the Keras library that contains multiple learning
biases, approximation functions, and optimizing functions
as well.

Model training is the fourth step in the deep learning
process. It involves training the model on the data that
has been collected and preprocessed. This includes opti-
mizing the model parameters to ensure that the model can
accurately predict the output given the input data. The
model should be trained until it can accurately predict
the output given the input data. This project requires
comprehensive working principles of the Keras library
which comprises the use of hyperparameters in Python
Integrated Environment. The hyperparameters include: -

" mMemory = maxlep=2000)
« samma = .95

» bpailon = 1.0

= epgilon. min = 0.01

*_epzilon, decay,= 0.995

*  learming rate = 0.01

Fig. 8. Hyperparmeters used

« Model evaluation is the fifth step in the deep learning pro-
cess. It involves evaluating the performance of the model
on the data that has been collected and preprocessed.
This includes measuring the accuracy of the model on
the data and comparing it to other models. The model
should be evaluated to ensure that it can accurately predict
the output given the input data. The model evaluation
is discussed in Chapter 5 which also contains the the
measurement of accuracy of the proposed model.

Model deployment is the sixth step in the deep learning
process. It involves deploying the model in a production
environment. This includes setting up the environment,
such as the hardware and software, and deploying the
model. The model should be deployed in a secure envi-
ronment to ensure that it is not compromised. Once the
model is deployed, it should be monitored to ensure that it
is performing as expected. The model deployment is also
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results.

In this work, we want to run our trained model on custom
tracks and simultaneously achieve a higher accuracy in a short
amount of iterations/times. Due to the higher complexity of
neuro evolution techniques which are most preferred over
other supervised learning techniques and also due to the
difficult implementation of the above technique in Python
code, we are going to provide a simpler and more precise
solution through the concepts of Q- Q-learning and further
contribute to the problem by working upon Deep Q-Learning
techniques in Python. Also, we are going to run our models
on multiple test cases to ensure higher fitness and accuracy.

B. Algorithm of the proposed model

Actions

Finish Up
Finish Down

Fig. 9. The Q Table

1) The Q-Learning Algorithm: This is a value-based ap-
proach based on a Q-Table The Q-Table provides the largest
expected future payoff for each activity at each state. We may
then select the action with the highest reward using this Q-
Table. see Fig (4.1). Here we want to teach an Al how to play
race a car in a game environment. In this game, the car tries
to reach and cross a circuit/track without hitting the wall or
going in reverse. The activities and states can be listed in a Q-
Table. The car’s four possible maneuvers—turning left, right,
up, and down will be represented by columns. The present
direction, including left, right, up, and down, can also be
the state. The rows are as shown. To further characterize the
current condition, we can add further states. For instance, we
may mention where the goal lines are and add the state’s goal
or the car’s right, up, or down barriers. We could provide more
information about the walls and their status by doing so, but
we’ll omit this for the sake of simplicity. We learn more about
the environment as we provide more state information, but our
system also becomes more complex. The values of the rows
and columns, as well as every single cell, will represent the
maximum predicted future reward for the specified state and
activity. We refer to this as the Q-value.

Q Learning Algorithm The calculation of the Q value is
not done in a predetermined way. Instead, we approach the
Q-improvement table iteratively. This process is known as
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training or learning. This is how the Q-Learning algorithm
functions:

o 1. First, Initialize each Q-value, with 0.

2. Then, choose an action-a in the current state-s based
on the current best Q-value.

3. After step 2, perform this action and observe the
outcome (new states).

4. Then, calculate the reward R following this action.

5. Finally, update Q with an updated formula known as
the Bellman Equation.

Repeat steps 2 through 5 until learning no longer advances,
at which point we should have a useful Q-Table. The Q-Table
can therefore be used as a reference sheet that always indicates
the optimum course of action for a particular state.

Understanding Exploration vs. Exploitation trade-off To
allow the agent to investigate the surroundings, we initially
choose the action at random. To ensure that the agent uses the
information it has, we reduce random exploration as we gain
more training steps and increase exploitation. This happens
when the Q values are all zeroes. A parameter commonly
referred to as the epsilon () parameter regulates this trade-off
in the calculations.

Reward Here, we’re working to create a mechanism for the
game’s rewards. In the instance of this car game, we can award
1 point if the vehicle crosses a goal line, -1 point if it hits a
wall or drives backward, and O points for all other permissible
maneuvers. Now that we have all these components, we can
use the Bellman equation: As seen in Fig (4.2) we can modify
our Q value as follows: -

Qneu(s,a) = Q(s,a) + & [R(s,a) + 7 - mazQ'(s', o) — Q(s,a)]

Current Q

Current Q

[0,1]
distant future
vs.
immediate future

Discount rate

Max Q

Fig. 10. Bellman equation

where, Current Q — represents the estimated value of taking
a particular action in a given state, considering both the imme-
diate reward and the expected future rewards. Learning Rate —
determines the extent to which new information overrides the
existing Q-value estimate during the learning process. Reward
— quantifies the immediate desirability or value of being in a
particular state and taking a specific action. Discount Rate —
determines the weight given to future rewards, allowing for the
consideration of long-term consequences in decision-making.
Max Q - selects the maximum Q-value among all possible
actions in a given state, representing the optimal expected
value for making the best decision.

The rate of discount, which ranges from 0 to 1, expresses
how much an agent is driven by rewards in the future as
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opposed to those that would be received right away. Finally,
utilizing this iterative learning technique or model, we can
produce an excellent Q-Table.

Q Learning

Q-Table =% Q Value

State

Deep Q Learning

o QValue Actionl

Neural

nd Network

State =P Q Value Action2

) Q Value Action3

Fig. 11. Q-Learning vs Deep Q-Learning with Neural Network

Understanding the common differences between Q learning,
deep Q learning, and deep Q network. Table (2.) There exists
is a very slight distinction only. Q-learning is a reinforcement
learning algorithm that helps to solve sequential tasks. It does
not need to know how the world works (it’s model-free) and
it can learn from past experiences including from different
strategies (so it is off-policy). It tries to predict a value that
reflects a future expected reward which indicates how good
any possible action is in a given state. After training, an agent
can then just take the action that indicates the highest reward
at every step to maximize its reward over time In the past,
Q-learning was limited to very small state and action spaces
because the computational requirements made more complex
problems impractical to deal with. The Q-values were updated
at every step in a Q-table with a row for every state and a
column for every action.

Fig. 12. Comparison Table

V. RESULT ANALYSIS AND IMPLEMENTATION
A. Setting Up the Game Environment

The following images depict the current progress of this
research work also I have been able to map out a complete
closed circuit/lap through basic means of design and model
implementation. This project requires comprehensive working
principles of the Keras library which comprises the use of hy-
perparameters in Python Integrated Environment. This project
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Fig. 15. Goals and Actions

» memory = degne(maxlen=2000) O =5
= samma= 095 Points 6 Speed 15
» ppailon=1.0 ]

*  epzilen. s = 0.01 00
*_epzilon, decay,= 0.995

»  learmipg rate = 0.01

Fig. 13. Hyper parameters used

Speed 15

0
.

Fig. 16. Movement and Sensing

then calculates the distance between the next wall in its path.
It then selects the fastest path it can travel in a single iteration
and moves accordingly. As shown in Fig 6. the car can even
move diagonally on its path but it senses the farthest point it
can see to move that distance in a single step.

Fig. 14. The Game Environment
B. Results and Observations

This image represents a basic layout of the track. The points
represent several iterations or movements in the forward or
backward direction of the car. The keys represent the direction
of the car and track its actions.

1) Defining Actions and Goals: GOAL REWARD =1 LIFE
REWARD = 0 PENALTY = -1/* The above code represents
what action will the car perform using DQN. This decision
is purely based upon the provided epsilon parameter that is
dependent upon a random action and some previous prediction
based on the model’s past training.

2) Movement and Distance Sensing: This image represents
the sensing lines that the car has got through DQN to move
to the furthest distance possible to be rewarded and calculate

its actions accordingly. | ..--.
the movement of the car throughout the closed circuit/track. — —

Phases of training before

# RACING DON

The car here basically can travel in any of the desired
directions as shown in Fig 6. Here the car takes one step and Fig. 17. Before Training
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£ RaCINGDON

As seen in the above Fig7, the car is not able to traverse a
single step at the beginning itself and hence has crashed into
the wall. Also, we can see that the car has gone in reverse as
indicated by the negative speed measure and hence has gained
no point. After leaving the car and programming running for
at least half an hour I was able to achieve some movement
shown in the next figure. Here the car is simply learning its first
steps and trying to learn not to make the same mistake again
and again. After leaving the program running for some time

£ racnsoon

£ RACING DN - X

Fig. 18. Before Training

(approx. an hour), the car showed some movement and didn’t
crash at the same point, instead it, moved past the previous
crashing point calculated the best distance in front of it, and
moved accordingly. But here also when it came around the
turn for the very first time it crashed. By repeating the same
steps again and again, I am going to train this model so that
it moves along the track and achieves a target goal without
colliding with any of these walls.

After training phase After completing a certain amount of
episodes the model was able to continue farther and farther
each time going a bit longer than the previous episode.
This process is shown in the observation images below. As
discussed above by repeating the same steps again and again,
after each episode the model got better and showed visible
improvements across various parameters.

£ RACING DON

£ RACING DON - x

Fig. 22. Points Gained

As seen in the above images, we can see that the model has
been trained with much better results as compared to before
the training was complete. All the observations and results
have been mapped on the next page in tabular data and also
visualized as a graphical diagram for better understanding and
representation. where, Goal Points — No. of goal line, the agent
hast to cross as part of the reward for positive reinforcement.
Fig. 19. Points Gained Throughput — Total time taken to complete a single lap or
cover a complete track. Speed — Speed at which the agent
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Gaoal Paints Throughput Spewed Accuracy | Time Taken | Delay
in Seecifor all 10 goals) 15/ 1i6& 6,66 166
il Seecifor all 10 goals) 15/% 3.77 1543 377
30 Ssarfor all 10 goals) 15/ 041 20.84s .41
40 Seecifor all 10 goals) 15/ 114 26.98s 1.14
50 Seecifor all 10 goals) 15/ 203 34.01s 203
&0 Seecifor all 10 goals) 15/% 3.05 A2 0hGs 3.05
T Ssarfor all 10 goals) 15/ 098 AR Ods 0.98
B0 Seecifor all 10 goals) 15/ 145 54.53¢ 1.489
o Seaplfar all 10 goals) 15/% 057 1min 1 sec a.s7
100 Seecifor all 10 goals) 15/% Na dalay 1min G sec o dalay

R A

Fig. 23. Observations and Results

will move across the environment. Accuracy — Time taken —
Time taken to complete a specific no. of goals defined by the
user. Delay — (Time taken for the current episode — Time taken
for the previous episode - Throughput)

377
3.05

1.66
149

Accuracy
Fig. 24. Points Gained

As we can see from the above graph goal on (0,0) represents
a 100 per accuracy, as we iterate with the value of 10 goals
our accuracy graph shows some increases and decreases in the
form of accuracy level but at the last of 100 goals it reached
to the accuracy level of 99.8per. Hence, the model had been
trained with a much better accuracy

VI. CONCLUSION

This research work concludes that this reinforcement learn-
ing technique trains a given system with a much better and an
efficient model training when used with the proposed model.
The objectives of this research were met at full capacity. The
challenges faced during this research work were resolved to
some extent. Finally, the goals and the results obtained from
the performance analysis of the proposed model were achieved
with better accuracy and efficiency.

The implementation of the proposed model has been done
in a Python IDE for the time being. Seeing the endless
possibilities, we can further emulate this model in a 3D
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environment having various constraints and test cases to in-
crease the model’s usability and real-world implementation for
Intelligent Driving Systems. At the current stage, the model is
only executable in a basic layout with the fundamental working
principle of Deep Q-learning strategies. In further stages, the
proposed model can be updated with the use of many other
Python-based libraries to increase the currently trained model’s
accuracy and efficiency such as delay and throughput with the
possible factor of elimination of collision with other objects
more frequently.
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