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Abstract— Worldwide installation of PV systems has
increased trash demand for efficient monitoring and energy
forecasting. Efficiency, safety, and financial risk management
are the basic cornerstones considered while monitoring PV
systems. Classical approaches for fault diagnosis and power
prediction of PVs have become obsolete due to their limitations
in handling nonlinearities under uncertainties and scalability
under varying operational conditions. With the evolution of
artificial intelligence and machine learning, intelligent data-
driven frameworks can be developed for real-time fault
diagnosis, performance evaluation, and predictive maintenance.
This study intends to present a critical review of the latest Al
and ML techniques in PV system monitoring and forecasting,
addressing issues relating to their aptitude in the identification
of the most common faults, such as hotspots, partial shading,
soiling, and inverter failures, together with improving short-
and long-term energy prediction. Deep learning and hybrid Al
models, which consider accuracy, sensitivity, and robustness
across heterogeneous datasets, are far superior to traditional
methods. Also, when integrated with IoT, edge computing, and
digital twin technologies, they build on scalability, adaptability,
and decision-making capabilities in real time. The review also
highlighted concerning issues of data scarcity, generalizability
across different climates, explainability, and cybersecurity.
Finally, future directions are outlined to create standard
datasets and benchmarking practices and construct explainable
hybrid models with a trustworthy and transparent foundation,
further leading to the wide adoption of Al in PV systems.

Keywords—  Artificial Intelligence, Digital Twin, Fault
Diagnosis, Machine Learning, Photovoltaic Systems, Renewable
Energy.

I. INTRODUCTION

Recent PV technology has undergone a significant
transformation in solar energy worldwide. Declining module
prices, inverter development, and favorable policies have
given way to deployments that have never been seen before in
residential, commercial, and utility fields. PV systems in the
world are expected to touch at least terawatt-level capacity
within the coming ten years, thus contributing largely to
decarbonization [1][2]. Their growth aside, operational
problems still exist in PV systems that inhibit the reliable
delivery of predictable power. Environmental hindrances such
as shading, dust deposition, temperature, and humidity cause
losses in efficiency, unexpected downtime, safety hazards, etc.
Faults, including hotspots, PID, soiling, and inverter failure,
further reduce performance and can also trigger a fire hazard
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or long-term failures, thereby increasing maintenance costs
and reducing system life. Hence, an effective fault detection
and diagnostic (FDD) is an utmost necessity for a safe and
efficient PV operation [3][4].

Intermittent solar phenomena and variability create
additional barriers for integration into the grid. Changes in
solar irradiance affect short-term generation and day-ahead
generation, thereby challenging the scheduling and
stabilization of the grid. Having an accurate forecasting tool
becomes paramount for balancing loads, kinds of reserves,
operational planning, and entering markets in smart grid
environments. It is in this field that artificial intelligence (AI)
and machine learning (ML) have become powerful allies,
capable of modeling nonlinear patterns in PV data [5][6].
SVMs, ANNs, CNNs, RNNs, and hybrid approaches are listed
among those techniques that show a bright prospect both in
FDD and energy forecasting, especially when coupled with
IoT-based high-resolution monitoring [7].

However, most studies focus exclusively either on fault
diagnosis or forecasting, leaving a gap in unified approaches.
Early fault detection helps improve the accuracy of
forecasting, whereas reliable predictions support anomaly
detection, thus presenting the need for integrated frameworks.
This review systematically analyses the state-of-the-art
AI/ML methods in the field of PV fault detection and energy
forecasting with respect to the methodologies involved,
datasets used, and performance metrics applied. This includes
a discussion of strengths and limitations and considers
scalability and deployment opportunities in a real-time
environment, incorporating a discussion of emerging trends
such as digital twins, IoT integration, and explainable Al to
provide a comprehensive roadmap for further research in
intelligent PV system management [8][9][10].

II. LITERATURE REVIEW OF AI/ML METHODS

A. Fault Detection and Diagnosis (FDD)

Deep-learning methods for analyzing EL imagery first
demonstrated that CNNss could vastly surpass classical SVMs
in cell-level defect detection methods. Deitsch et al. scored
around 88% using CNNs, versus 82% for SVM on 1,968 EL
cells in a baseline study for image-based PV FDD [11]. Field-
scale screening has since expanded using remote and thermal
modalities. UAV-acquired thermal data processed with
semantic segmentation networks such as DeepLabV3+, FPN,
and U-Net achieved Dice scores of 87-94% and IoU up to
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0.86 for faulty-panel localization [16]. More recent U-Net-
based implementations incorporating attention and atrous
spatial pyramid pooling modules enhance the robustness of
segmentations in complex utility plant scenes [27]. Physics-
informed approaches are emerging that combine modulated-
light sensing and ML to classify short-circuit current spectra,
simultaneously enabling identification and localization of
faults with cheap hardware [25].

On tabular electrical datasets, ensemble and tree-based
models are decent baselines. Extra Trees and Random Forest
classifiers have successfully diagnosed multiple panel-level
faults from SCADA or low-cost sensor data, even under
varying irradiance and temperature conditions [22,24,26].
System-scale digital-twin (DT) frameworks further enhance
generalization; for instance, PSO-optimized Transformer
models using current-ratio features detect and localize grid-
connected PV faults resiliently under operating condition
shifts [21]. DT-enabled anomaly detection has also been
applied to DC-DC converters, covering both hardware faults
and sensor-level attacks [20].

Image-based datasets primarily use EL/IR imagery at
module or array scale, often proprietary or curated (e.g., the
Deitsch EL corpus) [11]. UAV thermal studies include diverse
meteorological and environmental backgrounds [16,27],
while electrical-signal works rely on lab setups or SCADA
records, with class imbalance and limited labeled faults
remaining recurrent challenges [22,24,26].

B. Energy Forecasting

PV forecasting targets global irradiance, plant power, or
feeder-level injections across horizons from minutes to day-
ahead. Classical ANN and linear regression baselines mostly
gave way to RNNs (LSTM/GRU), CNN-temporal hybrids,
and meta-learning frameworks. Short-term forecasting
benefits from an attention-enhanced LSTM. Having a better
ramp tracking ability and adapted to weather-regime shifts
than a vanilla LSTM or SVR [12]. Wavelet packet
decomposition combined with LSTM isolates multi-
frequency PV dynamics to perform better than single-model
baselines in hour-ahead forecasting [13].

Hybrid statistical-Al ~ approaches integrate signal-
decomposition, uncertainty-modelling, and ensemble-
learning. CEEMD for feature selection followed by PSO-
optimization of BPNN improves short-term accuracy [14] and
yields a CNN-based meta-learning approach for robust day-
ahead forecasts across seasonal regimes [15]. They also
provide probabilistic hybrids (WT-CNN-BiLSTM with
attention + GMM) for calibrated forecasts needed for grid
reserves [19]. Temporal-conv-GRU with channel attention
offers state-of-the-art performance in short-term power
prediction [17]. Open datasets are limited; most studies rely
on plant-specific SCADA and NWP inputs. Standardization,
explicit weather-regime reporting, and probabilistic
evaluation remain important research priorities [14,18,19].

TABLE I SUMMARY OF LITERATURE

Author (Year) Methods / Key Limitations / Research
Findings Gaps

Deitsch et al. (2019) CNN vs SVM on EL Module-scale EL;

[11] images; CNN ~~88% |generalization to field
accuracy thermal scenes

Zhou & Zhang (2019) |LSTM with attention for|Limited probabilistic

[12] short-term power evaluation

Li etal. (2020) [13] WPD-LSTM hybrid; Site-specific tuning;
hour-ahead gains data-hungry

20

Volume XI and Issue I

Niu et al. (2020) [14]

RF-feature selection +
CEEMD + PSO-BPNN

Complex pipeline;
reproducibility

Zang et al. (2020) [15] |Deep CNN + meta- Benchmarking vs
learning for day-ahead |probabilistic baselines

Paradell et al. (2022) DeepLabV3+/FPN/U- | Annotation cost;

[16] Net on UAV thermal;  |transfer across plants
ToU<86%

Li etal. (2022) [17]

TCN-GRU variants for
short-term power

External validation sets
are absent

Bessa et al. (2023) [18]

Meta-learning blend of
base forecasters

Data-drift quantification
limited

Gu, B. ctal. (2023) [19]

WT-CNN-BIiLSTM-
Attention + GMM;
calibrated DA forecasts

Compute overhead in
operations

Zhang, X. et al (2023)
[20]

Hybrid SVR-BPNN
with modern optimizers

Stationarity assumptions

Hong et al. (2023) [21]

Digital-twin + PSO-
optimized Transformer
for FDD

DT modeling effort;
cyber-resilience tests

Abdelrahman et al.
(2024) [12]

Two-step model-based
+ RF FDD

Real-time deployment
details

Alrashidi et al. (2024)
[23]

TCN-ECANet-GRU
short-term forecasting

Weather-regime
reporting

Abdelkader et al. (2024)
[24]

Extra Trees classifier for
panel faults

Small-scale dataset

Tao etal. (2025) [25]

Modulated photocurrent
+ ML; fault localization

Field scalability and
standardization

Gaaloul et al. (2025)
[26]

RF/KNN detection using
capture-loss indicators

Label scarcity; class
imbalance

Rahman et al. (2025)
[27]

U-Net+ASPP for
thermal fault

Domain shift under
varying backgrounds

segmentation

III. COMPARATIVE ANALYSIS OF METHODS

Al and ML applications in PV systems focus mainly on
two areas: fault detection and diagnosis (FDD) and energy
forecasting. Each area favors different families of models,
modalities of data, and evaluation methods. Image-based
methods in FDD are centered on EL, IR, and UAV thermal
imagery. The initial EL studies demonstrated the predominant
superiority of CNNs over classical classifiers like SVM, with
Deitsch et al. reporting accuracies of around 88% versus
around 82% for an SVM on 1,968 EL cells [28]. Later, the
best lightweight CNN found even better EL inspection
accuracies of around 93%, thus proving that smaller-sized
models can perform equally well and facilitate a high-
throughput industrial deployment [29]. Later, studies
addressed class imbalance and multi-class defects with deeper
backbones, special loss functions, and data augmentation to
improve robustness beyond simple binary defect detection
[30][32].

At the plant level, UAV thermal inspection and semantic
segmentation networks, like U-Net, FPN, or DeepLabV3+,
have been described as yielding IoUs of up to ~0.86 in the
localization of defects at the string level [33]. Recent
advancements (2024-2025) incorporate attention and ASPP
modules on U-Net variants for better generalization against
different backgrounds, tiny hotspots, and domain shifts
[39],[40],[41]. Lightweight detectors focused on edge
deployment further push the ideals of efficiency alongside that
of accuracy [8]. On the other hand, electrical-feature
classifiers, such as random forests and decision trees, are still
to be considered competitive in low-sensor environments due
to their speed and interpretability; however, under variations
in irradiance and temperature or overlapping faults, their
performances tend to drop [33],[38],[42],[43].

In energy forecasting, in the short- to medium-term
horizons, recurrent architectures such as LSTM and GRU
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dominate. Hybrid models incorporating wavelet and multi-
resolution decomposition with LSTM denoise and increase
hour-ahead accuracy compared to single-model baselines
[31]. The ramp tracking and robustness at utility scale are
further increased by the Attention-LSTM and the TCN-GRU
variants [30],[39]. Day-ahead forecasting is aided by meta-
learning, ensemble techniques, and decomposition techniques
such as IVMD/CEEMD for non-stationary signals [36],[37].
More recent Transformer-hybrid and probabilistic models
help calibration and regime generalization [39],[41]. Neural
networks from the RNN, TCN, and Transformer families are
among the best at modeling nonlinear temporal dependencies
and incorporating exogenous inputs; nevertheless, they also
suffer from the problem of data shift and require explainability
for operational deployment.

Essentially, CNN/U-Net families are designed to localize
faults spatially, whereas RNN/GRU/Transformer families are
used for temporal forecasting. Integration strategies that
combine image-based FDD with temporal forecasting are now
becoming best practices for PV analytics.

TABLE II. COMPARATIVE SUMMARY

Study Task / Method |Dataset |Metric/ Context
(Year) Accuracy
Deitsch et al.,|EL FDD; CNN vs | 1,968 EL |Acc ~88% |Factory/module
Solar Energy [SVM cells (CNN) QA.
(2019) [28]
Jin et al., EL FDD; EL cell Acc ~93% |Factory EL
Energy lightweight CNN |dataset screening.
(2019) [29]
Tang etal., |EL FDD; deep EL multi- |vs baselines |Robust to class
(2020) [30] |CNN w/ class (multi-class) [imbalance.
augmentation
Lietal., WPD - LSTM Utility RMSE vs Hour-ahead
(2020) [31] |forecasting plant LSTM/SVR |decomposition.
power
Sharma et al. |[EL FDD; CNN EL Acc vs trad. |Multi-defect
(2020) [32] |[classification images features classification.
Lietal., Short-term Plant MAE/RMSE|7.5 - 15-min
Sensors forecasting; DL [SCADA |vs horizons.
(2022) [34] persistence
Zhang et al., [IR hotspot FDD; [IR video |Acc Low-cost,
(2022) [35] |lightweight CNN |— frames |reported; embedded.
edge-
friendly
Bessa etal., |Meta-learning Multi-site [MAE vs Day-ahead
(2023) [36] |blend (DA) single adaptation.
models
Wangetal. [IVMD - DL Utility RMSE/MAE |Noise-robust
(2023) [37]  |hybrid (ST) plant short-term.
Liu et al. EL FDD; EL Fl/loUvs |Handles tiny
(2024) [38] |improved U-Net |images baselines cracks.
Sousa etal. [LSTM short-term |Open 60-min Public dataset
(2024) [39] |forecasting EDP/plant MAE eval.
data
Zhang et al. |Probabilistic ST |[DKASC |[Calibrated |Uncertainty for
(2024) [40] |forecasting CRPS reserves.
(decomp + Vine
Copula)
Rahmanet |IR FDD ; U-Net +|Thermal |IoU/F1 t vs|Robust to
al. (2025) ASPP imagery |U-Net background.
[41]
Chenetal. |LSTM - Multi- MAE/RMSE [Regime-aware
(2025) [42] Transformer plant | short-term.
hybrid (ST)

For fault detection and diagnosis (FDD), either CNN or U-
Net outperforms the other when utilizing image and infrared
data for precise location determination, particularly with UAV
incorporation. Conversely, with low-rate electrical signals,
ensemble tree methods are more competitive when
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supplemented by physics-based features such as string current
imbalances or thermal deviations. Decomposition-based
hybrids act as a reasonable solution for robustness under non-
stationarity for energy forecasting. In FDD and forecasting
integration, a promising approach can be made through the
inclusion of fault-aware states into predictive models,
affording more accurate de-rated deterministic and
probabilistic forecasts for grid operation [33] [38-42].

IV. PERFORMANCE EVALUATION

For evaluating Al and ML model performance in
photovoltaic (PV) fault detection and energy forecasting,
metrics must be carefully chosen, as robustness needs to be
verified through real-world deployment requirements. For
fault detection, common metrics are accuracy, sensitivity
(recall), specificity, and Fl-score. For instance, on PV plant
data from 16 days of a grid-tied system, when comparing
results for KNN, Logistic Regression, Decision Tree, and
Naive Bayes, KNN achieved 99.2% precision and 99.7%
AUC-ROC for fault detection with respect to short circuits and
shading [43]. Similarly, the KNeighbors meta-learner
optimized by DBFLA for fault detection gave accurate results
detected by 96.07% accuracy, 96.30% precision, and 96.08%

TABLE III. PERFORMANCE EVALUATION IN LITERATURE STUDIES

Study (Year) Application &  |Metrics Key Result
Method Reported
Chouder et al. Fault detection:  |Precision, AUC- |KNN: 99.2%
(2024) [43] KNN vs others  |ROC precision, 99.7%
AUC
Massi et al. Fault detection:  |Accuracy, ~96% across
(2023) [44] DBFLA- Precision, F1 metrics
optimized KNN
Sharma et al. Forecasting: RMSE, MAE CNN-LSTM
(2022) [45] LSTM vs CNN- outperforms
LSTM LSTM
significantly
Khan et al. [46] |Forecasting: RMSE, MAE, R* |[RMSE/MAE |
attention-LSTM up t0 29%, R* t
31%
Arab at al. (2020) |Forecasting: RMSE, MAE RMSE ~0.524
[47] LSTM with GHI kW; MAE ~
0.303 kW
Wang et al. Forecasting: RMSE, MAE, R? |[RMSE=10.63;
(2022) [48] hybrid LSTM- MAE=2.0;
GRU R?=0.999
Mekki et al. [49] |Forecasting: RMSE, MAE RMSE | 5 - 7%,
multimodal MAE | 6 - 9.5%
vision-language
Muniraj et al. [50]|Forecasting: RMSE, MAE Consistently
CNN-LSTM better across
hybrid horizons
Zhao et al. (2021) |Forecasting: RMSE skill score [LSTM
[51] LSTM vs outperforms
persistence persistence
Riganti et al. Forecast RMSE, MAE, R? |LSTM is superior
(2020) [52] forecasting: across metrics
LSTM vs RNN
Peng et al. (2021) |Fault detection:  |F1, IoU High localization
[53] IR images CNN accuracy;
efficient
Marquez et al. Fault detection:  |IoU IoU ~0.86
(2021) [54] UAV IR
segmentation
Xie etal. (2022) |Fault detection:  |F1, IoU F1/IoU improved
[55] improved U-Net
Esposito et al. Fault detection:  |F1, IoU Enhanced under
(2023) [56] U-Net + ASPP real-world scenes
AlShahrani et al. |Forecasting: RMSE, MAE Best performance
(2025) [57] CNN-LSTM across 0.5-2 h
autoencoder horizons
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F1-score, showing the influence of optimization methods in
increasing detection accuracy [44].

In PV energy forecasting, regression-based metrics such
as RMSE, MAE, MAPE, and the coefficient of determination
(R?») are normally applied for error measurement. The
comparative investigation informs that hybrid setups like
CNN-LSTM do better than standalone LSTM in both short-
and long-term horizons by always delivering a lower RMSE
and MAE [45]. LSTM attention models also reduced RMSE
and MAE by up to 29% and increased R? by 31% under
adverse weather conditions [46]. Other inputs, such as global
horizontal irradiance, meanwhile, were found to enhance
forecasting accuracy (RMSE ~0.524 kW, MAE =~0.303 kW)
[47]. Hybrid LSTM-GRU models applied to minute-level PV
data yielded an RMSE of approximately 10.63, an MAE of
roughly 2.0, and an R? of approximately 0.999, outperforming
individual models [48]. The multimodal PV-VLM
framework, which merges imagery and textual inputs,
improved RMSE and MAE by ~5% and 6%, respectively.
Transfer experiments resulted in a further 7% improvement in
RMSE and a 9.5% improvement in MAE [49].

Studies benchmarked in the literature have always placed
CNN-LSTM and attention-based architectures as top
performers in terms of accuracy with robustness across
seasonal and site variations [50][51]. Scalability and real-time
applicability are still important; optimized DBFLA-KNN and
hybrid LSTM-GRU models provide computational
efficiencies required for near-real-time implementation
[44],[48]. Overall, these Al methods can bring significant
advances in fault detection and forecasting energy output.
There is a pressing need for standardized metrics, benchmark
comparisons, and scalable solutions for practical PV
applications.

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Even with several breakthroughs attained in Al- and ML-
based methods for PV fault detection and prediction, several
key challenges remain. A major limitation is the inability to
access labeled fault datasets. Usually, real-world PV
installations do not maintain comprehensive annotated data,
which is needed for supervised learning strategies to
generalize. Synthetic and augmented datasets offer a partial
solution but they are unable to replicate the entire gamut of
variations of operating conditions [49][50].

Another challenge is set to be the ability to generalize
across different climates, seasons, and PV technologies.
Models perform well in one geographical or technological set
but recognize fast drops in performance when deployed
elsewhere owing to the difference in irradiance pattern,
temperature dynamics, and system topologies, thus forging a
need for domain-adaptive and transfer learning frameworks.

Explainability also has to be carried out in a landscape
where safety-critical PV systems are involved. Current deep
learning models are frequently operated as black boxes, which
is providing limited insights into decision-making processes
[51][52].

In addition, the growing reliance on IoT-enabled
monitoring raises the cybersecurity issues. These systems are
more and more exposed to adversarial attacks and tampering
with the data. In order to go into reliable deployment, strong
encryption, a resilient edge-based architecture, and secure data
pipelines are considered basics [53][54][55].
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For making the company get faster, the next research
should go in concrete directions. For one thing, the setting up
of large-scale open-source benchmark datasets is highly
needed. All produced PV fault datasets are either proprietary
or limited in some way, giving scant chance to reproduce and
compare the work. Community-based ventures that collect
EL, IR, UAV thermal imagery, and SCADA data from various
environments would set up a base like ImageNet was for
computer vision. Well-founded standardized protocols for
annotation and shared repositories will guarantee clearer
transparency and comparable data.

Second, domain adaptation and transfer learning strategies
remain a maximum priority to guarantee model robustness
across regions and technologies. Unsupervised domain
adaptation, few-shot learning, and cross-plant validation are
some of such approaches, which will provide strength to
generalization and also lessen the costs of labeling.

Thirdly, integrating explainable Al in PV fault detection
and prediction frameworks is of utmost importance. Methods
like Grad-CAM, LIME, and SHAP provide excellent
explanation tools (visual in some cases or feature level)
capable of building user trust concerning automated decisions.
Hybrid PV systems that could merge some physics-informed
models with various approaches to XAl will thus provide the
required accuracy and interpretability.

Fourthly, digital twins integrated with IoT-based
monitoring bring prospects for adaptive and predictive PV
management. These real-time digital twins can simulate a fault
scenario so that they can be used for continuous model
updating. Considering additional attributes of cross-PV plant
model forming, federated learning frameworks would be
implemented in the future as well.

Fifth, security, and robustness shall remain the desiderata.
Adversarial robustness testing, secure edge-Al deployments,
and intrusion detection systems must be embedded within the
Al monitoring pipelines to protect critical energy
infrastructure.

Our Perspective is, beyond these directions, we emphasize
the underexplored but crucial intersection of cybersecurity and
Al-driven PV monitoring. Framing cyber-resilience as a
research priority alongside explainability and domain
adaptation positions Al not only as a predictive tool but also
as part of a secure and trustworthy energy infrastructure.
Furthermore, we argue that fault-aware forecasting
frameworks, where early fault detection directly informs
energy prediction, represent a next-generation research
direction. This integrated approach has not been
systematically emphasized in prior reviews but is essential for
reliable grid-level integration of solar power.

VI. CONCLUSION

The reviewed literature highlights how artificial
intelligence and machine learning have been able to transform
PV fault detection and energy forecasting methods. Al-based
methods consistently offer accuracy, sensitivity, and
robustness that are significantly higher than those obtained via
traditional statistical and rule-based approaches, depending on
the dataset and operating conditions imposed. The
developments impact PV system reliability and safety, making
it more efficient, thereby facilitating the integration of the
smart grid and sustainable energy infrastructure.
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Considering the scalability and real-time application, an

introduction is made to IoT monitoring using an edge-Al
digital twin methodology for PV predictive and adaptive
management. Challenges such as the availability of limited
labeled datasets, lack of generalization, and cyber risks,
however, are open to research.

Future progress requires standardized datasets, concurrent

benchmarking practices, and hybrid explainable models that
offer the best compromise between predictive power and
interpretability. Developments along these lines are crucial for
Al applications used in PV energy systems to gain trust and
transparency and be widely adopted [56][57].
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