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Abstract— Worldwide installation of PV systems has 
increased trash demand for efficient monitoring and energy 
forecasting. Efficiency, safety, and financial risk management 
are the basic cornerstones considered while monitoring PV 
systems. Classical approaches for fault diagnosis and power 
prediction of PVs have become obsolete due to their limitations 
in handling nonlinearities under uncertainties and scalability 
under varying operational conditions. With the evolution of 
artificial intelligence and machine learning, intelligent data-
driven frameworks can be developed for real-time fault 
diagnosis, performance evaluation, and predictive maintenance. 
This study intends to present a critical review of the latest AI 
and ML techniques in PV system monitoring and forecasting, 
addressing issues relating to their aptitude in the identification 
of the most common faults, such as hotspots, partial shading, 
soiling, and inverter failures, together with improving short- 
and long-term energy prediction. Deep learning and hybrid AI 
models, which consider accuracy, sensitivity, and robustness 
across heterogeneous datasets, are far superior to traditional 
methods. Also, when integrated with IoT, edge computing, and 
digital twin technologies, they build on scalability, adaptability, 
and decision-making capabilities in real time. The review also 
highlighted concerning issues of data scarcity, generalizability 
across different climates, explainability, and cybersecurity. 
Finally, future directions are outlined to create standard 
datasets and benchmarking practices and construct explainable 
hybrid models with a trustworthy and transparent foundation, 
further leading to the wide adoption of AI in PV systems. 

Keywords— Artificial Intelligence, Digital Twin, Fault 
Diagnosis, Machine Learning, Photovoltaic Systems, Renewable 
Energy. 

I. INTRODUCTION 
Recent PV technology has undergone a significant 

transformation in solar energy worldwide. Declining module 
prices, inverter development, and favorable policies have 
given way to deployments that have never been seen before in 
residential, commercial, and utility fields. PV systems in the 
world are expected to touch at least terawatt-level capacity 
within the coming ten years, thus contributing largely to 
decarbonization [1][2]. Their growth aside, operational 
problems still exist in PV systems that inhibit the reliable 
delivery of predictable power. Environmental hindrances such 
as shading, dust deposition, temperature, and humidity cause 
losses in efficiency, unexpected downtime, safety hazards, etc. 
Faults, including hotspots, PID, soiling, and inverter failure, 
further reduce performance and can also trigger a fire hazard 

or long-term failures, thereby increasing maintenance costs 
and reducing system life. Hence, an effective fault detection 
and diagnostic (FDD) is an utmost necessity for a safe and 
efficient PV operation [3][4]. 

Intermittent solar phenomena and variability create 
additional barriers for integration into the grid. Changes in 
solar irradiance affect short-term generation and day-ahead 
generation, thereby challenging the scheduling and 
stabilization of the grid. Having an accurate forecasting tool 
becomes paramount for balancing loads, kinds of reserves, 
operational planning, and entering markets in smart grid 
environments. It is in this field that artificial intelligence (AI) 
and machine learning (ML) have become powerful allies, 
capable of modeling nonlinear patterns in PV data [5][6]. 
SVMs, ANNs, CNNs, RNNs, and hybrid approaches are listed 
among those techniques that show a bright prospect both in 
FDD and energy forecasting, especially when coupled with 
IoT-based high-resolution monitoring [7]. 

However, most studies focus exclusively either on fault 
diagnosis or forecasting, leaving a gap in unified approaches. 
Early fault detection helps improve the accuracy of 
forecasting, whereas reliable predictions support anomaly 
detection, thus presenting the need for integrated frameworks. 
This review systematically analyses the state-of-the-art 
AI/ML methods in the field of PV fault detection and energy 
forecasting with respect to the methodologies involved, 
datasets used, and performance metrics applied. This includes 
a discussion of strengths and limitations and considers 
scalability and deployment opportunities in a real-time 
environment, incorporating a discussion of emerging trends 
such as digital twins, IoT integration, and explainable AI to 
provide a comprehensive roadmap for further research in 
intelligent PV system management [8][9][10]. 

II. LITERATURE REVIEW OF AI/ML METHODS 

A. Fault Detection and Diagnosis (FDD) 
Deep-learning methods for analyzing EL imagery first 

demonstrated that CNNs could vastly surpass classical SVMs 
in cell-level defect detection methods. Deitsch et al. scored 
around 88% using CNNs, versus 82% for SVM on 1,968 EL 
cells in a baseline study for image-based PV FDD [11]. Field-
scale screening has since expanded using remote and thermal 
modalities. UAV-acquired thermal data processed with 
semantic segmentation networks such as DeepLabV3+, FPN, 
and U-Net achieved Dice scores of 87–94% and IoU up to 

Asian Journal of Convergence in Technology 
ISSN NO: 2350-1146 I.F-5.11

Volume XI and Issue I 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

19



0.86 for faulty-panel localization [16]. More recent U-Net-
based implementations incorporating attention and atrous 
spatial pyramid pooling modules enhance the robustness of 
segmentations in complex utility plant scenes [27]. Physics-
informed approaches are emerging that combine modulated-
light sensing and ML to classify short-circuit current spectra, 
simultaneously enabling identification and localization of 
faults with cheap hardware [25]. 

On tabular electrical datasets, ensemble and tree-based 
models are decent baselines. Extra Trees and Random Forest 
classifiers have successfully diagnosed multiple panel-level 
faults from SCADA or low-cost sensor data, even under 
varying irradiance and temperature conditions [22,24,26]. 
System-scale digital-twin (DT) frameworks further enhance 
generalization; for instance, PSO-optimized Transformer 
models using current-ratio features detect and localize grid-
connected PV faults resiliently under operating condition 
shifts [21]. DT-enabled anomaly detection has also been 
applied to DC–DC converters, covering both hardware faults 
and sensor-level attacks [20]. 

Image-based datasets primarily use EL/IR imagery at 
module or array scale, often proprietary or curated (e.g., the 
Deitsch EL corpus) [11]. UAV thermal studies include diverse 
meteorological and environmental backgrounds [16,27], 
while electrical-signal works rely on lab setups or SCADA 
records, with class imbalance and limited labeled faults 
remaining recurrent challenges [22,24,26]. 

B. Energy Forecasting 
PV forecasting targets global irradiance, plant power, or 

feeder-level injections across horizons from minutes to day-
ahead. Classical ANN and linear regression baselines mostly 
gave way to RNNs (LSTM/GRU), CNN-temporal hybrids, 
and meta-learning frameworks. Short-term forecasting 
benefits from an attention-enhanced LSTM. Having a better 
ramp tracking ability and adapted to weather-regime shifts 
than a vanilla LSTM or SVR [12]. Wavelet packet 
decomposition combined with LSTM isolates multi-
frequency PV dynamics to perform better than single-model 
baselines in hour-ahead forecasting [13]. 

Hybrid statistical-AI approaches integrate signal-
decomposition, uncertainty-modelling, and ensemble-
learning. CEEMD for feature selection followed by PSO-
optimization of BPNN improves short-term accuracy [14] and 
yields a CNN-based meta-learning approach for robust day-
ahead forecasts across seasonal regimes [15]. They also 
provide probabilistic hybrids (WT-CNN-BiLSTM with 
attention + GMM) for calibrated forecasts needed for grid 
reserves [19]. Temporal-conv-GRU with channel attention 
offers state-of-the-art performance in short-term power 
prediction [17]. Open datasets are limited; most studies rely 
on plant-specific SCADA and NWP inputs. Standardization, 
explicit weather-regime reporting, and probabilistic 
evaluation remain important research priorities [14,18,19]. 

TABLE I.  SUMMARY OF LITERATURE 

Author (Year) Methods / Key 
Findings 

Limitations / Research 
Gaps 

Deitsch et al. (2019) 
[11] 

CNN vs SVM on EL 
images; CNN 88% 
accuracy 

Module-scale EL; 
generalization to field 
thermal scenes 

Zhou & Zhang (2019) 
[12] 

LSTM with attention for 
short-term power 

Limited probabilistic 
evaluation 

Li et al. (2020) [13] WPD-LSTM hybrid; 
hour-ahead gains 

Site-specific tuning; 
data-hungry 

Niu et al. (2020) [14] RF-feature selection + 
CEEMD + PSO-BPNN 

Complex pipeline; 
reproducibility 

Zang et al. (2020) [15] Deep CNN + meta-
learning for day-ahead 

Benchmarking vs 
probabilistic baselines 

Paradell et al. (2022) 
[16] 

DeepLabV3+/FPN/U-
Net on UAV thermal; 
IoU 86% 

Annotation cost; 
transfer across plants 

Li et al. (2022) [17] TCN-GRU variants for 
short-term power 

External validation sets 
are absent 

Bessa et al. (2023) [18] Meta-learning blend of 
base forecasters 

Data-drift quantification 
limited 

Gu, B. et al. (2023) [19] WT-CNN-BiLSTM-
Attention + GMM; 
calibrated DA forecasts 

Compute overhead in 
operations 

Zhang, X. et al (2023) 
[20] 

Hybrid SVR–BPNN 
with modern optimizers 

Stationarity assumptions 

Hong et al. (2023) [21] Digital-twin + PSO-
optimized Transformer 
for FDD 

DT modeling effort; 
cyber-resilience tests 

Abdelrahman et al. 
(2024) [12] 

Two-step model-based 
+ RF FDD 

Real-time deployment 
details 

Alrashidi et al. (2024) 
[23] 

TCN-ECANet-GRU 
short-term forecasting 

Weather-regime 
reporting 

Abdelkader et al. (2024) 
[24] 

Extra Trees classifier for 
panel faults 

Small-scale dataset 

Tao et al. (2025) [25] Modulated photocurrent 
+ ML; fault localization 

Field scalability and 
standardization 

Gaaloul et al. (2025) 
[26] 

RF/kNN detection using 
capture-loss indicators 

Label scarcity; class 
imbalance 

Rahman et al. (2025) 
[27] 

U-Net+ASPP for 
thermal fault 
segmentation 

Domain shift under 
varying backgrounds 

 

III. COMPARATIVE ANALYSIS OF METHODS 
AI and ML applications in PV systems focus mainly on 

two areas: fault detection and diagnosis (FDD) and energy 
forecasting. Each area favors different families of models, 
modalities of data, and evaluation methods. Image-based 
methods in FDD are centered on EL, IR, and UAV thermal 
imagery. The initial EL studies demonstrated the predominant 
superiority of CNNs over classical classifiers like SVM, with 
Deitsch et al. reporting accuracies of around 88% versus 
around 82% for an SVM on 1,968 EL cells [28]. Later, the 
best lightweight CNN found even better EL inspection 
accuracies of around 93%, thus proving that smaller-sized 
models can perform equally well and facilitate a high-
throughput industrial deployment [29]. Later, studies 
addressed class imbalance and multi-class defects with deeper 
backbones, special loss functions, and data augmentation to 
improve robustness beyond simple binary defect detection 
[30][32]. 

At the plant level, UAV thermal inspection and semantic 
segmentation networks, like U-Net, FPN, or DeepLabV3+, 
have been described as yielding IoUs of up to ~0.86 in the 
localization of defects at the string level [33]. Recent 
advancements (2024–2025) incorporate attention and ASPP 
modules on U-Net variants for better generalization against 
different backgrounds, tiny hotspots, and domain shifts 
[39],[40],[41]. Lightweight detectors focused on edge 
deployment further push the ideals of efficiency alongside that 
of accuracy [8]. On the other hand, electrical-feature 
classifiers, such as random forests and decision trees, are still 
to be considered competitive in low-sensor environments due 
to their speed and interpretability; however, under variations 
in irradiance and temperature or overlapping faults, their 
performances tend to drop [33],[38],[42],[43]. 

In energy forecasting, in the short- to medium-term 
horizons, recurrent architectures such as LSTM and GRU 
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dominate. Hybrid models incorporating wavelet and multi-
resolution decomposition with LSTM denoise and increase 
hour-ahead accuracy compared to single-model baselines 
[31]. The ramp tracking and robustness at utility scale are 
further increased by the Attention-LSTM and the TCN-GRU 
variants [30],[39]. Day-ahead forecasting is aided by meta-
learning, ensemble techniques, and decomposition techniques 
such as IVMD/CEEMD for non-stationary signals [36],[37]. 
More recent Transformer-hybrid and probabilistic models 
help calibration and regime generalization [39],[41]. Neural 
networks from the RNN, TCN, and Transformer families are 
among the best at modeling nonlinear temporal dependencies 
and incorporating exogenous inputs; nevertheless, they also 
suffer from the problem of data shift and require explainability 
for operational deployment. 

Essentially, CNN/U-Net families are designed to localize 
faults spatially, whereas RNN/GRU/Transformer families are 
used for temporal forecasting. Integration strategies that 
combine image-based FDD with temporal forecasting are now 
becoming best practices for PV analytics. 

TABLE II.  COMPARATIVE SUMMARY 

Study 
(Year) 

Task / Method Dataset Metric / 
Accuracy 

Context 

Deitsch et al., 
Solar Energy 
(2019) [28] 

EL FDD; CNN vs 
SVM 

1,968 EL 
cells 

Acc 88% 
(CNN) 

Factory/module 
QA. 

Jin et al., 
Energy 
(2019) [29] 

EL FDD; 
lightweight CNN 

EL cell 
dataset 

Acc 93% Factory EL 
screening. 

Tang et al.,  
(2020) [30] 

EL FDD; deep 
CNN w/ 
augmentation 

EL multi-
class 

vs baselines 
(multi-class) 

Robust to class 
imbalance. 

Li et al., 
(2020) [31] 

WPD LSTM 
forecasting 

Utility 
plant 
power 

RMSE vs 
LSTM/SVR 

Hour-ahead 
decomposition. 

Sharma et al. 
(2020) [32] 

EL FDD; CNN 
classification 

EL 
images 

Acc vs trad. 
features 

Multi-defect 
classification. 

Li et al., 
Sensors 
(2022) [34] 

Short-term 
forecasting; DL 

Plant 
SCADA 

MAE/RMSE 
vs 
persistence 

7.5 15-min 
horizons.  

Zhang et al.,  
(2022) [35] 

IR hotspot FDD; 
lightweight CNN 

IR video 
 frames 

Acc 
reported; 
edge-
friendly 

Low-cost, 
embedded. 

Bessa et al., 
(2023) [36] 

Meta-learning 
blend (DA) 

Multi-site MAE vs 
single 
models 

Day-ahead 
adaptation. 

Wang et al. 
(2023) [37] 

IVMD DL 
hybrid (ST) 

Utility 
plant 

RMSE/MAE Noise-robust 
short-term. 

Liu et al. 
(2024) [38] 

EL FDD; 
improved U-Net 

EL 
images 

F1/IoU vs 
baselines 

Handles tiny 
cracks.  

Sousa et al. 
(2024) [39] 

LSTM short-term 
forecasting 

Open 
EDP/plant 
data 

60-min 
MAE 

Public dataset 
eval. 

Zhang et al. 
(2024) [40] 

Probabilistic ST 
forecasting 
(decomp + Vine 
Copula) 

DKASC Calibrated 
CRPS 

Uncertainty for 
reserves. 

Rahman et 
al. (2025) 
[41] 

IR FDD ; U-Net + 
ASPP 

Thermal 
imagery 

IoU/F1  vs 
U-Net 

Robust to 
background. 

Chen et al. 
(2025) [42] 

LSTM
Transformer 
hybrid (ST) 

Multi-
plant 

MAE/RMSE 
 

Regime-aware 
short-term. 

 

For fault detection and diagnosis (FDD), either CNN or U-
Net outperforms the other when utilizing image and infrared 
data for precise location determination, particularly with UAV 
incorporation. Conversely, with low-rate electrical signals, 
ensemble tree methods are more competitive when 

supplemented by physics-based features such as string current 
imbalances or thermal deviations. Decomposition-based 
hybrids act as a reasonable solution for robustness under non-
stationarity for energy forecasting. In FDD and forecasting 
integration, a promising approach can be made through the 
inclusion of fault-aware states into predictive models, 
affording more accurate de-rated deterministic and 
probabilistic forecasts for grid operation [33] [38-42]. 

IV. PERFORMANCE EVALUATION 
For evaluating AI and ML model performance in 

photovoltaic (PV) fault detection and energy forecasting, 
metrics must be carefully chosen, as robustness needs to be 
verified through real-world deployment requirements. For 
fault detection, common metrics are accuracy, sensitivity 
(recall), specificity, and F1-score. For instance, on PV plant 
data from 16 days of a grid-tied system, when comparing 
results for KNN, Logistic Regression, Decision Tree, and 
Naïve Bayes, KNN achieved 99.2% precision and 99.7% 
AUC-ROC for fault detection with respect to short circuits and 
shading [43]. Similarly, the KNeighbors meta-learner 
optimized by DBFLA for fault detection gave accurate results 
detected by 96.07% accuracy, 96.30% precision, and 96.08%  

TABLE III.  PERFORMANCE EVALUATION IN LITERATURE STUDIES 

Study (Year) Application & 
Method 

Metrics 
Reported 

Key Result 

Chouder et al. 
(2024) [43] 

Fault detection: 
KNN vs others 

Precision, AUC-
ROC 

KNN: 99.2% 
precision, 99.7% 
AUC 

Massi et al. 
(2023) [44] 

Fault detection: 
DBFLA-
optimized KNN 

Accuracy, 
Precision, F1 

~96% across 
metrics 

Sharma et al. 
(2022) [45] 

Forecasting: 
LSTM vs CNN-
LSTM 

RMSE, MAE CNN-LSTM 
outperforms 
LSTM 
significantly 

Khan et al. [46] Forecasting: 
attention-LSTM 

RMSE, MAE, R  RMSE/MAE  
up to 29%, R   
31% 

Arab at al. (2020) 
[47] 

Forecasting: 
LSTM with GHI 

RMSE, MAE RMSE 0.524 
kW; MAE 
0.303 kW 

Wang et al. 
(2022) [48] 

Forecasting: 
hybrid LSTM-
GRU 

RMSE, MAE, R² RMSE=10.63; 
MAE=2.0; 
R²=0.999 

Mekki et al. [49] Forecasting: 
multimodal 
vision-language 

RMSE, MAE RMSE 5 7%, 
MAE 6 9.5% 

Muniraj et al. [50] Forecasting: 
CNN-LSTM 
hybrid 

RMSE, MAE Consistently 
better across 
horizons 

Zhao et al. (2021) 
[51] 

Forecasting: 
LSTM vs 
persistence 

RMSE skill score LSTM 
outperforms 
persistence 

Riganti et al.  
(2020) [52] 

Forecast 
forecasting: 
LSTM vs RNN 

RMSE, MAE, R² LSTM is superior 
across metrics 

Peng et al. (2021) 
[53] 

Fault detection: 
IR images CNN 

F1, IoU High localization 
accuracy; 
efficient 

Marquez et al. 
(2021) [54] 

Fault detection: 
UAV IR 
segmentation 

IoU IoU ~0.86 

Xie et al. (2022) 
[55] 

Fault detection: 
improved U-Net 

F1, IoU F1/IoU improved 

Esposito et al. 
(2023) [56] 

Fault detection: 
U-Net + ASPP 

F1, IoU Enhanced under 
real-world scenes 

AlShahrani et al. 
(2025) [57] 

Forecasting: 
CNN-LSTM 
autoencoder 

RMSE, MAE Best performance 
across 0.5–2 h 
horizons 
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F1-score, showing the influence of optimization methods in 
increasing detection accuracy [44]. 

In PV energy forecasting, regression-based metrics such 
as RMSE, MAE, MAPE, and the coefficient of determination 
(R²) are normally applied for error measurement. The 
comparative investigation informs that hybrid setups like 
CNN-LSTM do better than standalone LSTM in both short- 
and long-term horizons by always delivering a lower RMSE 
and MAE [45]. LSTM attention models also reduced RMSE 
and MAE by up to 29% and increased R² by 31% under 
adverse weather conditions [46]. Other inputs, such as global 
horizontal irradiance, meanwhile, were found to enhance 
forecasting accuracy (RMSE 0.524 kW, MAE 0.303 kW) 
[47]. Hybrid LSTM-GRU models applied to minute-level PV 
data yielded an RMSE of approximately 10.63, an MAE of 
roughly 2.0, and an R² of approximately 0.999, outperforming 
individual models [48]. The multimodal PV-VLM 
framework, which merges imagery and textual inputs, 
improved RMSE and MAE by ~5% and 6%, respectively. 
Transfer experiments resulted in a further 7% improvement in 
RMSE and a 9.5% improvement in MAE [49]. 

Studies benchmarked in the literature have always placed 
CNN-LSTM and attention-based architectures as top 
performers in terms of accuracy with robustness across 
seasonal and site variations [50][51]. Scalability and real-time 
applicability are still important; optimized DBFLA-KNN and 
hybrid LSTM-GRU models provide computational 
efficiencies required for near-real-time implementation 
[44],[48]. Overall, these AI methods can bring significant 
advances in fault detection and forecasting energy output. 
There is a pressing need for standardized metrics, benchmark 
comparisons, and scalable solutions for practical PV 
applications. 

V. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 
Even with several breakthroughs attained in AI- and ML-

based methods for PV fault detection and prediction, several 
key challenges remain. A major limitation is the inability to 
access labeled fault datasets. Usually, real-world PV 
installations do not maintain comprehensive annotated data, 
which is needed for supervised learning strategies to 
generalize. Synthetic and augmented datasets offer a partial 
solution but they are unable to replicate the entire gamut of 
variations of operating conditions [49][50].  

Another challenge is set to be the ability to generalize 
across different climates, seasons, and PV technologies. 
Models perform well in one geographical or technological set 
but recognize fast drops in performance when deployed 
elsewhere owing to the difference in irradiance pattern, 
temperature dynamics, and system topologies, thus forging a 
need for domain-adaptive and transfer learning frameworks. 

Explainability also has to be carried out in a landscape 
where safety-critical PV systems are involved. Current deep 
learning models are frequently operated as black boxes, which 
is providing limited insights into decision-making processes 
[51][52]. 

In addition, the growing reliance on IoT-enabled 
monitoring raises the cybersecurity issues. These systems are 
more and more exposed to adversarial attacks and tampering 
with the data. In order to go into reliable deployment, strong 
encryption, a resilient edge-based architecture, and secure data 
pipelines are considered basics [53][54][55]. 

For making the company get faster, the next research 
should go in concrete directions. For one thing, the setting up 
of large-scale open-source benchmark datasets is highly 
needed. All produced PV fault datasets are either proprietary 
or limited in some way, giving scant chance to reproduce and 
compare the work. Community-based ventures that collect 
EL, IR, UAV thermal imagery, and SCADA data from various 
environments would set up a base like ImageNet was for 
computer vision. Well-founded standardized protocols for 
annotation and shared repositories will guarantee clearer 
transparency and comparable data.  

Second, domain adaptation and transfer learning strategies 
remain a maximum priority to guarantee model robustness 
across regions and technologies. Unsupervised domain 
adaptation, few-shot learning, and cross-plant validation are 
some of such approaches, which will provide strength to 
generalization and also lessen the costs of labeling. 

Thirdly, integrating explainable AI in PV fault detection 
and prediction frameworks is of utmost importance. Methods 
like Grad-CAM, LIME, and SHAP provide excellent 
explanation tools (visual in some cases or feature level) 
capable of building user trust concerning automated decisions. 
Hybrid PV systems that could merge some physics-informed 
models with various approaches to XAI will thus provide the 
required accuracy and interpretability. 

Fourthly, digital twins integrated with IoT-based 
monitoring bring prospects for adaptive and predictive PV 
management. These real-time digital twins can simulate a fault 
scenario so that they can be used for continuous model 
updating. Considering additional attributes of cross-PV plant 
model forming, federated learning frameworks would be 
implemented in the future as well. 

Fifth, security, and robustness shall remain the desiderata. 
Adversarial robustness testing, secure edge-AI deployments, 
and intrusion detection systems must be embedded within the 
AI monitoring pipelines to protect critical energy 
infrastructure. 

Our Perspective is, beyond these directions, we emphasize 
the underexplored but crucial intersection of cybersecurity and 
AI-driven PV monitoring. Framing cyber-resilience as a 
research priority alongside explainability and domain 
adaptation positions AI not only as a predictive tool but also 
as part of a secure and trustworthy energy infrastructure. 
Furthermore, we argue that fault-aware forecasting 
frameworks, where early fault detection directly informs 
energy prediction, represent a next-generation research 
direction. This integrated approach has not been 
systematically emphasized in prior reviews but is essential for 
reliable grid-level integration of solar power. 

VI. CONCLUSION 
The reviewed literature highlights how artificial 

intelligence and machine learning have been able to transform 
PV fault detection and energy forecasting methods. AI-based 
methods consistently offer accuracy, sensitivity, and 
robustness that are significantly higher than those obtained via 
traditional statistical and rule-based approaches, depending on 
the dataset and operating conditions imposed. The 
developments impact PV system reliability and safety, making 
it more efficient, thereby facilitating the integration of the 
smart grid and sustainable energy infrastructure. 
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Considering the scalability and real-time application, an 
introduction is made to IoT monitoring using an edge-AI 
digital twin methodology for PV predictive and adaptive 
management. Challenges such as the availability of limited 
labeled datasets, lack of generalization, and cyber risks, 
however, are open to research. 

Future progress requires standardized datasets, concurrent 
benchmarking practices, and hybrid explainable models that 
offer the best compromise between predictive power and 
interpretability. Developments along these lines are crucial for 
AI applications used in PV energy systems to gain trust and 
transparency and be widely adopted [56][57]. 
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