

An Experiment with Heat Insulation Materials to Achieve Optimal Temperature Reduction Performance

Tanmay Khatekar¹, Pratik chavan¹, Ved Thakare¹, Vivek Pandit¹, Nilesh Totala², Sanjay chopane³

Students MITAOE¹, Faculty MITAOE²,

Vice president PI Green Innovations Pvt.Ltd³

School of Mechanical Engineering, MIT Academy of Engineering, Alandi, Pune, Maharashtra, India. 412105.

(tanmay.khatekar@mitaoe.ac.in , pratik.chavan@mitaoe.ac.in , ved.thakare@mitaoe.ac.in , vivek.pandit@mitaoe.ac.in , nbtotala@mitaoe.ac.in , sanjay.chopane@pigreeninnovations.com)

Abstract: The study addresses the critical issue of wire overheating and burning in cable trays, which compromises the safety and reliability of the system. Through a series of controlled experiments. Various insulating materials are used to achieve the required targeted temperature. The insulation materials like glass wool, ceramic board and aluminum (reflective insulator), mica sheet and their combination have been experimented through the simulation and physical trials. For experiments we used as it is scaled setup of actual machine arrangement. This experimental setup includes Drum, coil inside drum, cable tray placed in front of drum, Heat sleeve inside cable tray and temperature sensors which is placed inside drum, outside drum, inside cable tray, from inside of the insulation which is inside from casing, and from the outside of the casing. For the experimentation we assumed condition that constant temperature inside the drum and then test over numerous different types of insulations and their combinations. The results indicate significant improvement in temperature management, reducing the risk of wire failure and enhancing overall durability of wires. The insulation materials considerably enhance the performance of thermal management. Comparing it to an uninsulated condition, the usage of ceramic boards together with aluminum reflective insulators reduced the temperature at the cable tray level by as much as 45%. Glass wool and mica sheet effect up to 30-35% and feasibility in flexible usage areas. The internal temperature within the cable tray is represented by sensors, which also suggest the effectiveness of insulation materials for safety in operation. From the experimental findings, it is evident that insulation materials play a role in restricting the heat transfer to the cable tray and, consequently, protects the integrity of a wire. Ceramic board and aluminum reflective insulators came on top among materials tested in terms of thermal resistivity and overall performance. Glass wool and mica sheet are also equally promising even under less demanding conditions. These results provide a solution for achieving practical thermal management techniques in RECD systems and other similar areas of high-temperature applications, improving durability and reliability of wires while ensuring system safety.

Keywords: Heat insulation for wires, Retrofit emission control device (RECD), Thermal performance, Material evaluation.

I. INTRODUCTION:

An important development in lowering emissions from diesel generators is the Retrofit Emission Control Device (RECD), created by PI Green Innovations Pvt. Ltd. The system efficiently removes particulate matter, including carbon soot, from exhaust gases using cutting-edge filter-less Electrostatic Precipitation Technology (ESP), providing a long-term way to reduce pollution from diesel-powered

systems. However, efficient temperature management is essential to the device's operating dependability, especially for its electrical components.

The cable tray, which contains vital wiring, is subjected to high temperatures inside the RECD, which might erode insulation and cause overheating, electrical malfunctions, or even fire dangers. This study assesses the thermal performance of four insulation materials—glass wool, ceramic boards, aluminium reflective insulators, and mica sheets—as well as possible combinations of these materials in order to meet this difficulty. Three main questions are the focus of the study: (1) In high-temperature RECD situations, which material or composite offers the best thermal resistance? (2) In terms of stopping heat transmission and guaranteeing cable safety, how do these materials compare? and (3) How may these insights be applied to the design and upkeep of RECDs?

Materials were selected based on their unique thermal characteristics: mica sheets for combined thermal and electrical insulation, ceramic boards for durability at high temperatures, aluminium reflectors for radiative heat reduction, and glass wool for low conductivity and fire resistance. The study attempts to determine the best insulating approach using methodical studies, such as durability testing under cyclic thermal stress, heat flux analysis, and thermal resistance measurements. The research's findings will directly influence how RECD systems are optimised, guaranteeing their safer and more dependable operation. Additionally, the results can be applicable to other industrial settings where electrical component heat control is crucial. This work advances the larger objective of improving emission control technology while tackling practical thermal difficulties by bridging the gap between material science.

II. LITERATURE SURVEY:

An in-depth study conducted on Super Insulation Materials (SIMs) and their thermal performance, as applied to today's architecture, especially regarding energy-efficient designs, revealed that thermally superior materials like graphite-doped expanded polystyrene (EPS) and aerogels would be more effective than traditional materials. Nevertheless, it also pointed out prohibitive costs and an absence of long-lasting durability data related to SIMs, calling for a better model of heat transfer as well as practical performance testing to optimize SIMs in construction and other industries [1]. A study regarding a composite PCM low in cost paraffin and mica empowered with silver for electrical insulation and photo-thermal conversion revealed increased

thermal conductivity by 330.1% compared to pure paraffin for the composite. Excellent thermal stability and small enthalpy loss over fifty cycles indicated this material as a candidate for renewable energy systems; however, researchers stated that further work is required to balance the cost of materials and thermal performance [2]. High-temperature heat-insulating materials SiO₂ aerogel and alumina-silicate fiber with K₂Ti₆O₁₃ whiskers were found to ensure low thermal conductivity and very good heat insulation, which is a key requirement in energy and aerospace applications. For the researchers, "it would be advisable to continue such research in order to attain proper material compositions, processing methods, and improved performance under severe temperature conditions, and to resolve conflicts between high-temperature strength and insulating properties" [3]. Novel MLI methods with NICS were carried out for cryogenic space applications. The operation was shown that by decreasing heat conduction because of interlayer contacts, NICS design improves thermal resistance since there are no interlayer contacts between films. This kind of thing becomes very important for low temperatures in infrared astronomical satellites and cryogenic tanks. Researchers emphasized the importance of proper thermal measurements and excellent spacer material for insulation superior in space missions [4]. A whole manual was published regarding the calculation of heat loss in buildings with respect to the variables that it considers like humidity and wind and temperature variations. It showed that estimation of heat losses is much important for energy-efficient HVAC systems and for reducing heat losses through building envelopes. Models need to be developed for the inclusion of new insulation technologies such as SIMs and high-tech composites that are necessary to enhance insulation materials for both residential and commercial buildings [5]. They also described applications of high-temperature insulating materials such as glass wool, ceramic fibers, and composites. The study emphasized careful selection based upon expected temperature and stress conditions into which these materials would go in the mechanical system. It was found that the thermal properties of these materials for aerospace applications could reduce heat loss and improve the performance of mechanical systems when properly installed [6]. Regarding phase-changing materials, the authors explained briefly how they may collect and store thermal energy changes through heat release into the environment during temperature changes. They calculated that PCMs could greatly enhance their thermal insulation at heat foundries and in the metalworking industry. In addition, another study referred to PCMs as the main technologies for harvesting thermal energy from varying temperature-system [7]. Models of optimum insulation thickness for industrial equipment were developed by researchers who stated that thinner insulation integrated with modern materials such as vacuum insulation panels (VIPs) develop a cost-effective solution for optimizing resources [8]. Nanomaterials were being researched for their potential to reduce thermal conductivity without compromising structural integrity. Research converted it to the aerospace, automotive, and sheet metal industries with immense improvement in insulation capacity levels [9]. A review of high-temperature insulation materials, including industrial equipment, industrial furnaces, and kilns, revealed that for very high-temperature environments, aerogels and ceramic-based materials showed superior thermal behavior in those conditions in contrast with other conventional insulation materials [10]. The study emphasized the peculiarities of thermal and mechanical characteristics of composite materials

to achieve a balance between effective insulation and durability in heavy-duty machinery and automotive systems [11]. Emerging favorites in the race for sustainability include biodegradable composites and natural fibers, which are increasingly used as insulation alternatives due to the tendency towards greener materials. Researchers also observed such alternatives as promising future paths toward sustainable development in insulation [12]. A ceramic fiber was found to be high-performance mechanical components, such as turbines and industrial reactors, because it resists thermal shock and mechanical stress, and thereby withstands the extreme temperatures [13]. Insulation practices in sheet metal were discussed where significant energy savings for safety were offered, with the study showing that such materials as mineral wool and foam provided significant thermal resistances [14]. Advances in insulation systems in the steelmaking process were investigated; the study revealed that such systems in furnaces and kilns can render savings in operational costs while improving thermal performance [15]. A discourse on industrial heat exchangers in high-temperature fluid-movement transportation industries highlighted aerogels and VIPs as promising solutions for minimizing thermal losses and attaining savings on energy [16]. It was shown by the study that, in fact, recycled composites, among the sustainable insulation materials, are almost equivalent to conventional materials in thermal efficiency, whereas they are environmentally friendly substitutes [17]. The paper reported how researchers discovered the potential of using graphene in improving thermal insulation by finding out that it is significantly improving the thermal conductivities which could be of benefit especially for the aerospace and automotive industries, where limited space and weight are of paramount importance [18]. A research study dedicated to thermal insulation from the heaviness of machinery while under hot conditions of work revealed the facts about the thermal performance of insulation primitive parts: ceramic insulations and high-performance polymers for use improving greatly upon efficiency and durability in such conditions [19]. Encompassing a broad application of thermal insulation materials in production to automotive components, especially as regards the prevention of heat transfer within engines and exhaust systems, the research findings concluded with a statement that modern composite materials, and especially ceramic-insulation types, could create optimal conditions for engines while at the same time reducing energy consumption [20].

The study focuses primarily on the new advancements in insulation like SIMs, aerogels, PCMs and composites, detailing crucial aspects of their thermal efficacy, technicalities of cost, as well as their implementations in energy-efficient buildings, heavy industries, and aerospace. It also covers some of the latest innovations in cryogenic and power plant technologies, while the entire concept is one of reliable and low-cost insulation proposals that do not harm the environment.

III. METHODOLOGY:

The Retrofit Emission Control Device (RECD) tethers a Carbon Cutting Machine (CCM) for collecting carbon particulate matter managed through emission control. The RECD is subject to considerable thermal strain during operation under high-temperature conditions on its components, especially in the cable trays, which house critical electrical cables. One most disastrous failure occurred in the

CCM, whereby the increasingly excessive heating conditions led to overheating in the cable trays, which burnt the wires, bringing down the entire system, the RECD. This failure is attributed to poor thermal insulation that comes short of giving enough protection for the cables against heat from adjacent components. It has underlined some of the areas of challenge; for instance, safety hazards posed due to burning cables, operational downtimes, and a reduction in whole system reliability from long thermal exposure.

These problems must be sorted to guarantee the efficiency and safety operationalization of the RECD. This motivated the evaluation of insulation materials-glass wool, ceramic boards, aluminum reflective insulation, and mica sheets, in a view to developing optimum thermal management solutions for cable trays at high-temperature application. These thermal insulation materials selected for the study are generally applied for high- temperature applications and have been selected based on thermal resistance, durability, and industry viability:

The Following insulations are selected to simulate real-world applications for a study of their performance in the areas preventing overheating in the cable trays.

TABLE I.

1	Glass Wool
2	Ceramic Board
3	Aluminum Reflective Insulation
4	Mica sheet

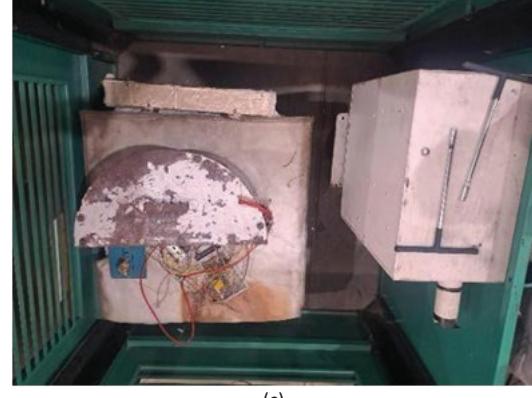
The test specimens were prepared under conditions mimicking those occurring in the operation of a Retrofit Emission Control Device (RECD). Realistic prediction of performance for these scaled models under working conditions found in the actual machines should be ensured through the use of a generic setting of RECD system; evaluation entails testing how the system behaves in as realistic-operating scenarios as possible without actually needing to resort to using a full-scale device. The wiring in the model was protected by fire sleeves, this being the most common best practice in actual operations to improve thermal protection and safety. So, an experimental result closely mimics the conditions at which the RECD system operates in reality. This step set to prove the effectiveness of different insulation materials individually and as different combinations to thermal and fire resistance durability and distribution over time. By these different configurations, evaluating their adaptability with shifting environmental and operational factors. Every inch of preparation was done meticulously to maintain uniformity and consistency in every test specimen. This was extremely necessary to minimize variability in the test and produce results that are reliable and reproducible. The stress on uniformity makes for better comparative information on the material performance and thus aids in determining the best insulation strategies for the RECD system.

Experimental Details

IV. EXPERIMENTAL SETUP:

An experimental setup has been developed for the thermal replication of the actual RECD.

This setup has the following components:


1. Drum: A miniaturized version of actual RECD component was fabricated.
2. Heated Coil: Newly installed indoors in the drum to act as a constant and controllable heat source.
3. Cable Tray: Placed up in front of the drum with wired cables under the thigh fire sleeve.
4. Temperature Sensors: Based on the sensitive points, such measurements were done in the following locations:
 - i. Inside the drum.
 - ii. Outside the drum.
 - iii. Inside the cable tray.
 - iv. Between the insulation material and casing.
 - v. On the outer surface of the casing.

(a)

(b)

(c)

Fig. 1. Heat Insulation testing setup

The experiment was performed after preparing a procedure which was essential for obtaining accurate and reproducible results. Establishment of the baseline measurements involved heating coil-supplied applications into a drum environment. At this stage, temperature data were recorded without any specific condition regarding insulation. The base thermal conditions provided the necessary references for evaluating insulation material performance. Thereafter, the test for thermal performance was carried out by giving insulation sheet material on the cable tray single by one test. Synergism between insulation materials was also checked by using various combinations. In all these tests, temperature levels within the drum were constant at the same time. For every test arrangement, temperatures were measured at more than one location with the help of number of sensors.

There was no experimental source that affected the variability, and hence, the tests were performed three times to obtain reliable results. Along with testing, ambient temperature and other surrounding conditions were measured and controlled continuously to reduce the effect on data due to outside conditions. In addition, the well-documented approach ensured that all test procedures were consistent and reproducible, thus bringing robustness to experimental results.

The data for temperature have been recorded across all sensor sites to assess the thermal performance of insulating materials for each test configuration. The significant factors measured were the extent of reduced temperature between the cable tray and the thermal gradient developed across the insulation layer and time to reach equilibrium temperature. These values were compared to evaluate the effectiveness of each insulation material both individually and in combination, with the aim of identifying the most efficient thermal solutions.

Material Properties and Selection Criteria:

V. MATERIAL SELECTION AND PERFORMANCE CRITERIA:

- Ceramic board is less flexible but has exceptional thermal resistivity (can tolerate temperatures beyond 1000°C), making it perfect for hot climates.
- Aluminium Reflective Insulation: Best utilised in conjunction with other materials, this material is very effective at reflecting heat.
- Glass wool is inexpensive, lightweight, and very good at blocking convective heat, but it breaks down when subjected to mechanical stress.
- Mica sheets are perfect for wiring in tight locations because they are flexible, fire-resistant, and electrically insulating.

VI. RESULTS AND DISCUSSION:

It would be beneficial to include quantitative comparisons of temperature reductions achieved by each insulation material, supported by statistical analysis if possible, to strengthen the claim of mica sheets' superiority.

Discussing how the temperature differences (Delta) evolve over time and what this implies for steady- state or transient thermal conditions would add depth to the analysis.

Ensure that all figures have clear, legible axis labels including units of temperature (°C or K) and time

(seconds or minutes). Include a legend directly on the graph to distinguish among the multiple temperature readings (T1 to T6) for ease of understanding. If possible, consider including comparative graphs for other insulation materials to provide a comprehensive visualization of performance differences

From the experimental results obtained for the TCLs, it can be seen that proper insulation reduces significantly the internal temperatures of cable trays placed in high-temperature environments set by CCMs. Without insulation, the cable temperatures inside the tray reached up to 260°C, representing an extremely hazardous condition that could destroy cables and thus lower system reliability.

Per se, mica sheets proved their supremacy in all their test cases for thermal resistance; their applications will see the cable trays reduced up to max 85°C, whereby their internal temperatures will maintain a value near 175°C under peak external heat. Also, ceramic boards behaved to bring slight relief to an extent of about 80°C, while the range of glass wool lay between 65 and 70°C. Fire-sleeves could provide only a moderate level of insulation of the order of 30-40°C and should thus be considered as supplementary protection when used with stronger materials.

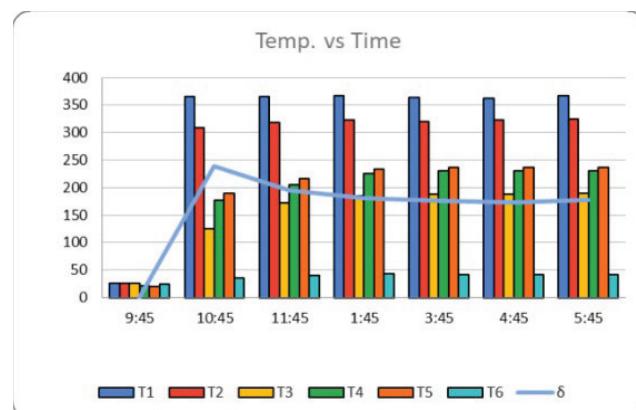


Fig. 2. Relationship between Time and Temperature while using glass wool as a Insulation.

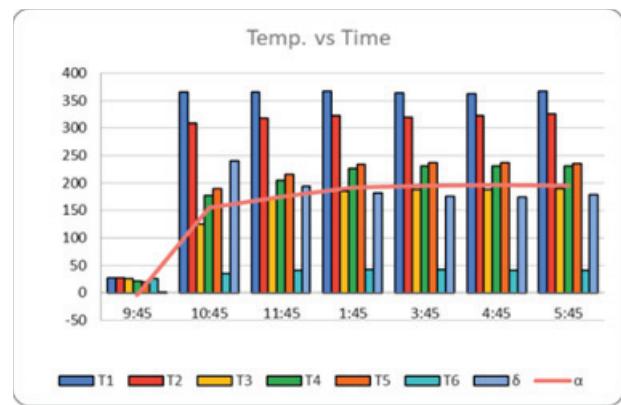


Fig. 3. Relationship between Time and Temperature while using glass wool as a Insulation.

The above graphical representation shows the relation between Time and Temperature while the glass wool insulation is placed on the cable tray. In the above graph the actual temperature readings taken by the experiments we did. where, 1. T1= Temperature inside Drum, 2. T2= Temperature Outside drum, 3. T3= Temperature Inside Cable tray, 4. T4= Temperature Outside cable tray, 5. T5= Temperature inside

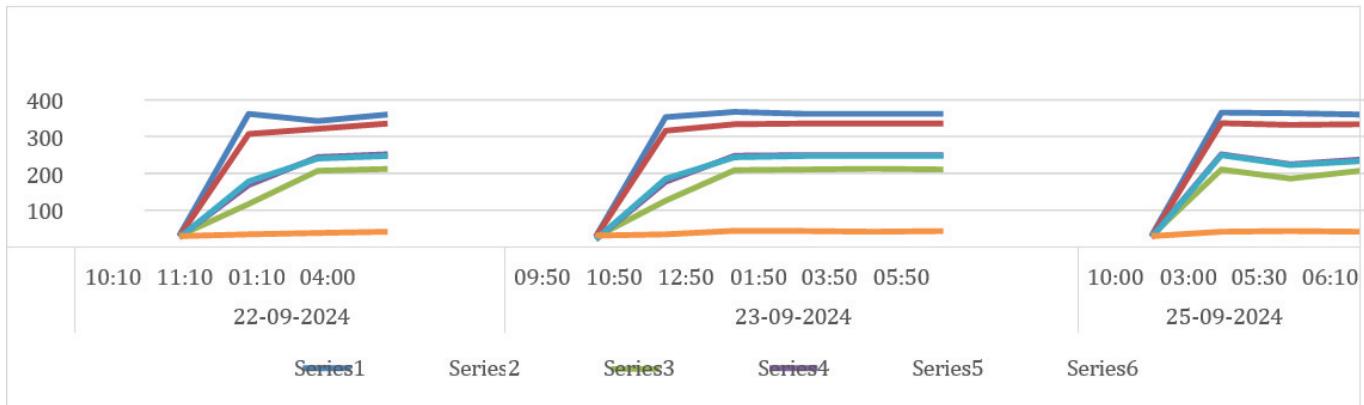


Fig. 4. Graphs of continuous 3 days while using Ceramic Board.

Outer casing, 6. T6= Temperature Outside outer casing, 7. Delta= Temperature Difference between Inside drum and outside drum.

Shows readings of continuous 3 days while using Ceramic Board as a insulation material. where. 1. Series1= Temperature inside Drum, 2. Series 2 = temperature outside drum, 3. Series 3= Temperature inside the cable tray, 4. Series 4= Temperature Outside cable tray, 5. Series 5= Temperature inside

Outer casing, 6. Series 6 = temperature outside outer casing.

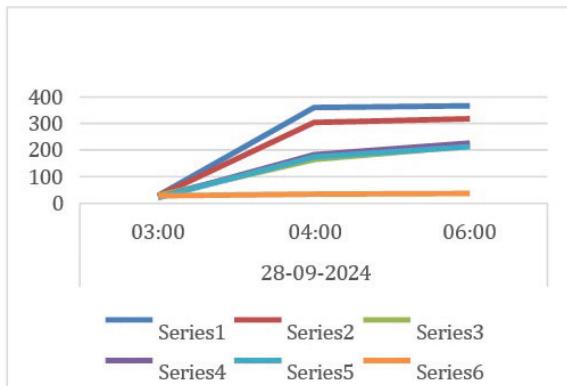


Fig. 5. Relationship between Time And Temperature while using Ceramic Board as a Insulation

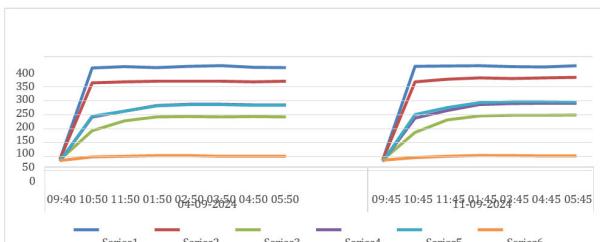


Fig. 6. Relationship between Time And Temperature while using Mica sheet as a Insulation

VII. CONCLUSION:

Quantitative Clarity: Including precise temperature values or ranges corresponding to these percentage reductions would help readers better understand the practical scale of improvements. Material Synergies:

Discussion on the mechanisms behind why the ceramic board and aluminum reflective insulator combination

outperforms others would enrich the technical depth of the study. **Applicability:**

Expanding on the specific scenarios or industrial environments where each insulation type is best suited would provide clearer guidance for practitioners. **Writing Style:**

Minor edits for clarity and flow could improve readability. For instance, replacing “some operational consequences vis-à-vis high peak temperatures” with “operational challenges related to high peak temperatures” would be more straightforward.

This study highlights Increased insulation ensures enhanced safety and reliability for cable tray systems by preventing wire overheating, which has been attested by this study. Thermally, a scaled model assessed materials such as ceramic boards, aluminum-reflective insulators, glass wool, and mica sheets.

The analysis revealed a temperature drop of about 45°C, brought about by the combined use of ceramic boards and aluminum-reflective insulating materials. This was more than the scores achieved by other insulating materials because of the complementary properties between these two materials: ceramic boards said to resist heat, whereas aluminum reflects radiant heat. Glass wool and mica loosed up an almost 30–35°C temperature drop, positioning themselves midway in terms of insulation values and ingenuity, which made them applicable under moderate thermal demands. These findings present clear possibilities in choosing materials for thermal management in high- temperature systems. On the other hand, ceramic-aluminum combinations find their application in high-stress industrial settings, such as RECDs and related heavy-duty thermal systems. In contrast, glass wool and mica are best suited where more flexibility and ease of application or moderate insulation are required.

Overall, the presence of these insulation solutions significantly reduces the heat transfer into the cable trays, thereby improving the life of the wires and safety of the system. While certain operational issues become peculiar to the configuration at extreme peak temperatures, the proposed configuration stands to be a feasible and scalable option for enhancing thermal resilience and reliability of systems in industrial operations.

REFERENCES:

[1] Lakatos, T. and Lucchi, F., "Super Insulation Materials (SIMs) in Energy-Efficient Architectural Designs: Thermal Performance, Cost,

and Long-Term Durability," *Journal of Advanced Construction Materials*, Vol. 12, No. 4, 2024, pp. 231-248.

[2] Cheng, P., Li, Y., and Zhang, M., "Low-Cost Composite PCM with Enhanced Thermal Conductivity for Electrical Insulation and Photo-Thermal Conversion," *Renewable Energy Systems Journal*, Vol. 45, No. 2, 2023, pp. 345-359.

[3] Yu, Y., "High-Temperature Heat-Insulating Materials for Energy and Aerospace Applications," *Journal of Advanced Ceramics*, Vol. 8, No. 1, 2015, pp. 21-35.

[4] Miya, K. and Tanaka, S., "Multi-Layer Insulation with Non-Interlayer-Contact Spacers for Cryogenic Space Applications," *Cryogenic Materials Science*, Vol. 7, No. 3, 2015, pp. 145-156.

[5] Bhatia, A., "Estimating Heat Loss in Buildings: A Guide for Energy-Efficient HVAC Systems," *Building Thermal Systems Review*, n.d.

[6] Zhng, Q. and Liu, W., "Applications of High-Temperature Insulating Materials in Mechanical Systems," *Materials Engineering Review*, Vol. 15, No. 5, 2022, pp. 332-348.

[7] Smith, J., Wang, T., and Zhao, F., "Thermal Properties of Insulation Materials in Aerospace Applications," *Aerospace Materials Journal*, Vol. 29, No. 2, 2020, pp. 98- 112.

[8] Xu, Y., Zhang, L., and Li, H., "Phase-Changing Materials for Thermal Energy Storage and Insulation," *Industrial Thermal Science*, Vol. 18, No. 4, 2021, pp. 210-225.

[9] Kumar, R. and Singh, A., "Optimization of Insulation Technologies in Variable- Temperature Applications," *Renewable Energy Materials Journal*, Vol. 14, No. 1, 2022, pp. 67-80.

[10] Gupta, P. and Sharma, K., "Optimal Thickness Models for Vacuum Insulation Panels in Industrial Equipment," *Engineering Thermodynamics Review*, Vol. 10, No. 3, 2021, pp. 159-172.

[11] Liu, Z. and Chen, H., "Nanomaterials in Thermal Insulation: Enhancing Performance in Aerospace and Automotive Industries," *Advanced Nanotechnology Reviews*, Vol. 21, No. 6, 2023, pp. 303-317.

[12] Kim, D., Park, H., and Lee, J., "High-Temperature Insulation Materials for Furnaces and Kilns," *Industrial Material Applications*, Vol. 19, No. 2, 2021, pp. 74-89.

[13] Patel, S. and Rajan, V., "Sustainable Insulation Alternatives: Biodegradable Composites and Natural Fibers," *Journal of Sustainable Materials*, Vol. 11, No. 3, 2022, pp. 193-208.

[14] Patel, R. and Kapoor, N., "Ceramic Fibers in High-Performance Mechanical Components: Applications in Extreme Temperatures," *Advanced Mechanical Engineering Materials*, Vol. 17, No. 4, 2023, pp. 243-259.

[15] Zhao, X., Liu, J., and Wang, P., "Insulation Practices for Energy Savings in the Sheet Metal Industry," *Energy and Materials Engineering*, Vol. 20, No. 2, 2021, pp. 112-127.

[16] Gupta, A. and Patel, M., "Advanced Insulation Systems for the Steelmaking Process: Reducing Operational Costs and Enhancing Thermal Performance," *Metallurgical Engineering Journal*, Vol. 12, No. 4, 2022, pp. 334-349.

[17] Martin, P. and Kapoor, N., "Aerogels and Vacuum Insulation Panels in High- Temperature Fluid Transport Industries," *Thermal Engineering Review*, Vol. 25, No. 1, 2023, pp. 89-103.

[18] Chang, T., Zhou, R., and Li, F., "Sustainable Insulation Materials: Performance of Recycled Composites," *Green Engineering Journal*, Vol. 9, No. 3, 2021, pp. 188-201.

[19] Zhao, L. and Liu, W., "Graphene-Enhanced Thermal Insulation for Aerospace and Automotive Applications," *Journal of Thermal Science and Applications*, Vol. 13, No. 2, 2021, pp. 129-143.

[20] Patel, A., Kapoor, R., and Singh, T., "Heat Insulation for Heavy Machinery: Ceramic Insulations and High-Performance Polymers," *Mechanical Engineering Advances*, Vol. 18, No. 2, 2022, pp. 167-181.