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Abstract—Healthcare cloud systems must satisfy strict 
security and compliance controls while operating under 
constrained budgets. Traditional DevSecOps pipelines improve 
delivery velocity but often treat cost governance and supply-chain 
assurance as separate concerns, leaving gaps in artifact 
traceability, dependency risk visibility, and budget enforcement. 
This paper proposes a FinOps-aware DevSecOps pipeline for 
healthcare workloads that integrates software bill of materials 
(SBOM) generation, SLSA-aligned supply-chain assurance 
checkpoints, and policy-as-code gates that jointly enforce security, 
compliance, and cost guardrails from build to deployment. The 
approach emphasizes auditable evidence, artifact integrity, and 
continuous validation to reduce release risk and cost drift without 
undermining delivery performance. 

Index Terms—FinOps, DevSecOps, Healthcare Cloud, SBOM, 
Supply Chain Security, SLSA, Policy-as-Code, Compliance 
Automation, Cloud Cost Governance 

I. INTRODUCTION 
Healthcare organizations increasingly rely on cloud 

platforms to scale clinical and operational services, improve 
availability, and accelerate delivery of digital capabilities. For 
workloads that handle electronic protected health information 
(ePHI), faster delivery must be balanced with HIPAA-aligned 
safeguards, including strong access control, reliable auditability, 
integrity protections, and secure transmission and storage 
practices. At the same time, cloud consumption introduces 
persistent financial pressure. CI workloads, multi-environment 
sprawl, oversized resources, and ungoverned data transfer can 
amplify spend quickly, often faster than teams can detect or 
correct it. In many organizations, security and compliance 
controls have matured within CI/CD through scanning and 
automated checks, while cost governance remains external to 
the delivery process and is addressed through reporting, 
periodic optimization, or finance-led review cycles. This 
separation creates a structural weakness: a release can be 
“secure enough” to pass technical gates, yet still introduce 
avoidable cost drift and produce incomplete, hard-to-audit 
evidence chains. 

Software supply-chain risk compounds this challenge. 
Modern healthcare applications are assembled from extensive 
third party dependencies, container images, and managed build 
services, and the delivery pipeline itself becomes part of the 

attack surface. When dependency inventories are incomplete 
and build provenance is not verifiable, it becomes difficult to 
answer audit-critical questions with confidence: precisely what 
was deployed, which components were included, and whether 
the artifact originated from an approved, tamper-resistant build 
process. These gaps are not only operationally costly during 
incident response and audits; they also undermine governance 
because controls are evaluated without a deterministic link to 
the artifacts that run in production. 

This paper presents a FinOps-aware DevSecOps pipeline 
for HIPAA-relevant healthcare workloads on AWS that unifies 
supply-chain assurance and cost governance with continuous 
security validation. The pipeline binds every deployable artifact 
to an immutable identifier and attaches two evidence primitives: 
a software bill of materials (SBOM) that provides component-
level transparency and SLSA-aligned provenance that links the 
artifact to its source and build context. A single policy-as-code 
layer then evaluates security, compliance relevant checks, and 
FinOps guardrails as promotion criteria, producing audit-ready 
decision records that are stored as release evidence. The result 
is a delivery model in which cost accountability and supply-
chain integrity are enforced at the same point where 
organizations already enforce security gates, improving 
traceability and reducing both release risk and cost drift while 
preserving a practical workflow suitable for healthcare delivery 
teams. 

II. II. BACKGROUND AND RELATED WORK 
HIPAA’s Security Rule establishes safeguards for ePHI [1], 

motivating technical controls around access, audit, integrity, 
and transmission security. In cloud-native environments, 
guidance on container and micro service security emphasizes 
defense-in-depth and continuous validation to reduce 
misconfiguration and runtime risk [2]. FinOps formalizes 
cross-functional accountability [3] for cloud cost management 
and promotes practices such as allocation, budgeting, and 
continuous optimization. SBOM standards such as SPDX [4] 
and Cyclone [5] enable structured dependency inventories that 
support vulnerability response and auditability. SLSA provides 
a framework for improving build integrity and provenance to 
reduce tampering and increase traceability from source to 
artifact [6]. Policy-as-code approaches enable machine 
evaluable governance checks to be enforced consistently across 
delivery workflows while producing decision evidence. 
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III. PROBLEM STATEMENT AND THREAT MODEL 

A. Problem Statement 
Healthcare delivery teams need an end-to-end pipeline that 

provides auditable assurance for workloads handling ePHI 
while preventing cost drift. The pipeline must ensure that every 
deployed artifact is traceable to its source and build context,  
that an SBOM and verifiable provenance exist for what is 
promoted, that security and compliance controls are evaluated 
continuously through automated gates, and that cost 
governance is enforced as a first-class release criterion rather 
than a post-deployment reporting activity. Current 
implementations frequently meet these needs partially and in 
disconnected tooling, which leads to inconsistent enforcement 
and incomplete evidence during audits. 

B. Threat Model 
This work considers adversarial and operational risks across 

the software supply chain, cloud configuration, and financial 
governance. Supply-chain risks include dependency 
compromise through malicious packages or compromised 
upstream sources, as well as build tampering via compromised 
CI runners or injected build steps. Deployment risks include 
image drift and artifact substitution, where unverified images 
or images lacking required SBOM/provenance are promoted. 
Additional risks include secret leakage through logs or artifacts, 
and compliance drift caused by insecure IAM policies, missing 
encryption or logging, or unintended network exposure of 
systems that process ePHI. Finally, cost drift risks include 
untagged spend, oversized compute, runaway CI workloads, 
uncontrolled data egress, and environment sprawl. The 
proposed architecture reduces likelihood and blast radius by 
combining SBOM transparency, SLSA-aligned provenance 
verification, and unified policy gates for security, compliance, 
and cost. 

IV. PROPOSED ARCHITECTURE AND SYSTEM 
DESIGN 

A. Pipeline Overview (AWS Reference Design) 
The proposed FinOps-aware DevSecOps pipeline binds 

each release to an immutable artifact, an SBOM, and verifiable 
provenance metadata, and then enforces unified policy gates for 
security, HIPAA-relevant compliance controls, and cost 
guardrails before promotion across environments [7]. Artifacts 
are promoted by digest to prevent tag-based ambiguity, and 
each promotion produces evidence records that are stored for 
audit retrieval. 

Figure 1 summarizes the end-to-end release lifecycle and 
the evidence that is generated and persisted at each stage. The 
design highlights how SBOMs, provenance, scans, and policy 
decisions are bound to digest-pinned artifacts to support 
auditability and controlled promotion. 

B. Account and Environment Segmentation 
The reference deployment uses AWS Organizations with 

separate accounts for development, testing, and production to 
reduce blast radius and support segregation of duties. 
Centralized logging and security monitoring operate from a 
dedicated 

 
Fig. 1. Evidence-bound FinOps-aware DevSecOps pipeline on AWS. 

SBOMs, provenance records, scan outputs, and policy decisions are 
stored as release evidence and linked to digest pinned promotions. 

Security/logging account [8]. Network boundaries rely on 
VPC segmentation and private subnets for systems handling 
ePHI, with controlled service access patterns that reduce 
unnecessary exposure while preserving operational 
observability. Figure 2 depicts the AWS multi-account 
segmentation used to reduce blast radius and centralize security 
logging and evidence retention. This structure supports 
segregation of duties and simplifies audit reconstruction across 
development, test, and production environments. 
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Fig. 2. AWS multi-account segmentation aligned with HIPAA relevant 

governance. Centralized security/logging and evidence retention 
support auditability and blast-radius reduction. 

C. Build, Artifact, and Evidence Stores 
Source changes trigger a CI workflow that performs 

controlled builds and produces deployable artifacts. Container 
images are stored in Amazon ECR and referenced by 
immutable digests rather than mutable tags. Audit evidence—
SBOM files, provenance attestations, scan summaries, and 
policy decisions—is stored in an append-only manner in an 
evidence store (e.g., Amazon S3 with retention controls [9]), 
enabling later reconstruction of what was deployed and which 
checks were satisfied. 

D. SBOM Generation and Binding to Artifacts 
During build, an SBOM is generated for application 

dependencies and container images, then stored alongside the 
corresponding image digest [10]. The pipeline requires that the 
SBOM record matches the immutable artifact identifier prior to 
promotion, ensuring that dependency inventory is directly tied 
to what runs in each environment. This linkage supports rapid 
exposure analysis during vulnerability response and improves 
auditability by making deployed composition explicit. 

E. SLSA-Aligned Provenance Checkpoints 
The pipeline produces provenance metadata describing the 

source reference, build definition, build environment identity, 
and the resulting artifact digest [11]. Provenance records are 
cryptographically protected using managed key controls and 
stored as evidence. Promotion stages verify the presence and 
integrity of provenance before allowing deployment, reducing 
the risk of artifact substitution and strengthening traceability 
from code to runtime. 

F. Continuous Security, Compliance, and Cost Validation 
Security and compliance validation occurs both before 

deployment and after deployment. Pre-deploy gates evaluate 
infrastructure and application changes, enforce vulnerability 
and secret-handling thresholds, and require policy conformance 
before promotion. Post-deploy validation detects configuration 
drift, aggregates security findings, and centralizes audit trails 
for identity and workload activity. In parallel, FinOps 
guardrails are enforced as release criteria through policy 
evaluation, preventing promotion when allocation tagging is 
missing, when projected spend exceeds predefined envelopes, 
or when resource and egress configurations violate cost 
governance constraints. Policy decisions and their rationales 
are recorded as evidence artifacts to support repeatable 
governance and audit readiness. 

G. Policy-as-Code Enforcement and Audit Evidence 
Packaging 
A unified policy-as-code layer evaluates security, 

compliance, and cost rules using SBOMs, provenance, scan 
outputs, infrastructure plans, and deployment manifests as 
inputs, and produces allow/deny decisions with structured 
reasons [12]. These policy decisions are stored and linked to 
release identifiers and artifact digests. For HIPAA-oriented 
audit workflows, each release yields an evidence bundle that 
includes SBOM, provenance, validation outputs, and 
deployment metadata, enabling rapid reconstruction of what 
ran in production and under which controls. 

V. V. IMPLEMENTATION APPROACH 
This section describes a practical implementation on AWS 

that remains consistent with HIPAA-oriented controls and the 
supply-chain and FinOps objectives defined earlier. The 
implementation is intentionally modular so that organizations 
can adopt the evidence model (SBOM, provenance, policy 
decisions) without requiring a single CI/CD product or a single 
deployment platform. Table I enumerates the evidence artifacts 
captured across the lifecycle and stored as a release bundle. 
This evidence model enables deterministic reconstruction of 
deployments from immutable artifact digests. 

Source changes trigger a controlled build stage that 
produces a container image and attaches two evidence artifacts 
to the release: an SBOM and a provenance record.  

TABLE I.  EVIDENCE ARTIFACTS CAPTURED ACROSS THE RELEASE 
LIFECYCLE 

Stage Evidence captured (stored as release 
bundle) 

Build/Test Build logs, test results, artifact digest, 
CI identity metadata 

SBOM SBOM document bound to immutable 
artifact digest 

Provenance Provenance record linking source 
revision, build context, and digest 

Scan/Validate Vulnerability summaries, IaC findings, 
secrets checks, config checks 

Policy Gate Signed allow/deny decision with 
reasons and evaluated inputs 

Deploy/Runtime Deployment metadata, drift findings, 
audit trail references 
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TABLE II.  UNIFIED POLICY-AS-CODE INPUTS ACROSS SECURITY, 
COMPLIANCE, AND FINOPS 

Policy domain Primary evaluated inputs 
Security SBOM, scan outputs, container metadata, 

secrets checks, IAM deltas 
Compliance Encryption/logging configurations, network 

exposure, audit trail presence 
FinOps Mandatory tags, planned resource changes, 

projected spend signals, egress signals 
 

Container image is stored in Amazon ECR and referenced 
by immutable digest during promotion to prevent tag ambiguity. 
Evidence artifacts are stored in Amazon S3 with versioning and 
retention controls to support audit retrieval, while 
cryptographic protection for integrity is provided through AWS 
KMS-managed keys [13]. Operational audit trails and access 
logs are captured through AWS-native logging mechanisms, 
enabling reconstruction of who changed what and when for 
release-critical actions. Table II summarizes the unified 
policyas-code domains and the primary inputs evaluated for 
each domain. Using shared inputs reduces governance 
fragmentation and improves consistency of promotion 
decisions. 

Security validation is integrated into the pipeline through 
repeatable checks over infrastructure and application artifacts. 
Infrastructure changes are evaluated before deployment using 
policy evaluation on infrastructure definitions and planned 
changes, and runtime configurations are monitored for drift 
using continuous configuration assessment. Container and 
dependency exposure is handled by enforcing that releases 
contain SBOMs bound to immutable digests, and by applying 
policy thresholds that block promotion when risk is 
unacceptable. The same policy layer also enforces governance 
requirements that are typically treated as “after deployment” 
concerns, such as mandatory allocation tags and environment-
specific constraints on resource sizing and spend envelopes. 

FinOps guardrails are implemented as a release criterion 
rather than a periodic reporting activity. Cost allocation is 
enforced by rejecting promotions when required tags are 
missing, and budget adherence is enforced by evaluating 
projected spend signals derived from environment baselines 
and planned changes. This approach ensures that financially 
risky releases do not reach higher environments without 
explicit exception handling, and it produces policy decision 
evidence that can be audited alongside security and compliance 
evidence. 

VI. EVALUATION METHODOLOGY 
The evaluation is conducted as an illustrative case study 

using a controlled AWS-based reference environment 
representative of a healthcare micro service deployment. The 
baseline is a conventional DevSecOps pipeline that includes 
standard build, test, and security scanning prior to deployment. 
The proposed pipeline adds SBOM generation and binding to 
immutable artifact digests, SLSA-aligned provenance creation 
and verification, and unified policy-as-code gates that enforce 
security, HIPAA-relevant control checks, and FinOps 
guardrails prior to promotion. 

To keep the comparison fair, both pipelines use the same 
codebase, the same functional test suite, the same release 
cadence, and the same environment topology. The reported 
results focus on four categories: security effectiveness, 
compliance evidence completeness, FinOps governance 
outcomes, and delivery overhead. Security effectiveness is 
assessed by the rate at which vulnerable or non-compliant 
artifacts are blocked before promotion. Evidence completeness 
is assessed by whether each production deployment can be 
reconstructed from immutable artifact identifiers and 
accompanying SBOM and provenance records. FinOps 
governance is assessed by allocation completeness through 
mandatory tags and by adherence to spend envelopes enforced 
at promotion time. Delivery overhead is assessed by added 
pipeline latency at median (p50) and tail (p95) levels. 

All values reported are illustrative to demonstrate expected 
directional outcomes under the stated design assumptions and 
do not represent a claim about a specific production 
deployment. 

VII. RESULTS AND DISCUSSION 
This section reports illustrative outcomes comparing the 

baseline pipeline and the proposed FinOps-aware DevSecOps 
pipeline. The results emphasize how SBOM and provenance 
improve traceability, how policy-as-code reduces risky 
promotions, and how cost guardrails shift governance earlier in 
the lifecycle. The discussion also quantifies delivery overhead 
introduced by additional evidence creation and policy 
evaluation. 

A. Security Outcomes 
In the baseline pipeline, releases were primarily blocked by 

vulnerability scanning when issues exceeded a severity 
threshold. In the proposed pipeline, releases were additionally 
blocked when SBOM or provenance evidence was missing or 
when provenance verification failed policy requirements. 
Under the illustrative setup, the proposed pipeline increased 
pre-production blocking of high-risk promotions from 62% to 
88%, reflecting the combined impact of evidence requirements 
and stricter policy gating. 

TABLE III.  ILLUSTRATIVE COMPARISON: BASELINE DEVSECOPS VS 

Proposed FinOps-Aware DevSecOps 
Metric Baseline Proposed 
Blocked high-risk 
promotions (%) 

62 88 

Evidence completeness per 
release (%) 

70 98 

Tagged allocation coverage 
(%) 

76 99 

Spend variance vs envelope 
(%) 

18 6 

Added pipeline duration p50 
(min) 

0.0 1.6 

Added pipeline duration p95 
(min) 

0.0 4.2 

B. Compliance Evidence Completeness 
Audit readiness requires the ability to answer what was 

deployed, when it was deployed, and under which controls it 

Asian Journal of Convergence in Technology 
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I 

127



was approved and verified. In the baseline pipeline, evidence 
was fragmented across CI logs and deployment metadata, 
reducing the ability to reconstruct deployments 
deterministically. In the proposed pipeline, each deployment is 
linked to an immutable digest with an SBOM and provenance 
record stored in the evidence repository. In the illustrative 
results, evidence completeness improved from 70% to 98%, 
with the remaining gap attributed to early-stage integration 
errors and incomplete metadata capture in non-critical 
environments. 

 

C. FinOps Governance Outcomes 
The baseline pipeline did not enforce cost allocation or 

spend envelopes at promotion time, which led to untagged 
resources and periodic spend spikes that were only detected 
after deployment. The proposed pipeline enforces mandatory 
tagging and evaluates coast guardrails prior to promotion. In 
the illustrative results, tagged allocation coverage improved 
from 76% to 99%, and monthly spend variance versus the 
predefined envelope decreased from 18% to 6%, driven by 
rejecting promotions that introduced disallowed resource sizing 
or missing allocation metadata. 

 

D. Delivery Overhead 
Strengthening assurance introduces additional pipeline 

steps for SBOM generation, provenance creation, and policy 
evaluation. In the illustrative results, the proposed pipeline 
increased median pipeline duration by 1.6 minutes and p95 
duration by 4.2 minutes. The overhead was primarily 
attributable to evidence generation and verification, while 
policy evaluation contributed a smaller fraction. This overhead 
is generally acceptable for healthcare workloads where 
auditability and controlled change are prioritized, but it should 
be tuned based on organizational release frequency and risk 
tolerance. 

 

E. Summary of Comparative Results 
Table III summarizes the illustrative comparison across the 

four categories. 

 

 
 Blocked Evidence Tagged Variance 

 Baseline  Proposed 

Fig. 3. Illustrative comparison of key metrics (higher is better except 
variance). 

 

 Baseline (illustrative)  Proposed 
(illustrative) 

Fig. 4. Illustrative trade-off between added pipeline overhead and an 
aggregate assurance score derived from evidence completeness and 
pre-promotion risk blocking. 

F. Visualization 
Fig. 3 visualizes the comparative improvements for the key 

assurance and governance metrics using the illustrative values. 

The results indicate that coupling SBOM and provenance 
evidence with unified policy enforcement can materially 
improve auditability and reduce both security and cost risks 
before deployment. The primary trade-off is modest pipeline 
overhead, which can be mitigated through caching, parallel 
validation, and policy tuning while preserving deterministic 
evidence linkage. Figure 4 illustrates the expected trade-off 
between additional pipeline overhead and improved release 
assurance. The proposed approach increases verification work 
modestly while materially strengthening evidence 
completeness and pre-promotion risk blocking. 

VIII. LIMITATIONS 
The proposed approach is intended to improve auditability 

and governance for HIPAA-relevant healthcare workloads, but 
its effectiveness depends on several technical and 
organizational constraints. First, SBOM completeness is 
bounded by build visibility and dependency resolution fidelity. 
If the build process pulls dependencies dynamically at runtime, 
relies on opaque vendor components, or includes unmanaged 
binaries, the resulting SBOM may be incomplete or may not 
reflect the precise composition of the deployed artifact. 
Similarly, SBOM quality can vary across languages and 
packaging ecosystems, which can affect downstream 
vulnerability and license analysis. 

Second, provenance assurance is only as strong as the 
integrity of the build environment that produces it. If CI runners 
are misconfigured, lack isolation, or permit untrusted build 
steps, provenance records may not provide meaningful 
guarantees even if they are formally present. Provenance 
verification also requires consistent identity and key 
management practices; weak controls around signing keys, role 
assumptions, or pipeline permissions can reduce the 
trustworthiness of evidence bundles. In multi-stage builds and 
complex dependency chains, capturing accurate provenance 
may introduce additional engineering effort and operational 
overhead. 
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Third, policy-as-code enforcement introduces the risk of 
false positives and workflow friction. Strict policy gates can 
block releases due to transient scanning results, incomplete 
metadata, or conservative thresholds that do not reflect 
application context. While such strictness may be desirable in 
regulated environments, it can also increase lead time if 
exception handling and policy tuning are not well-governed. 
Conversely, overly permissive policies can weaken the 
intended benefits and reintroduce governance fragmentation. 
Achieving the right balance requires iterative tuning and clear 
ownership across security, platform, and finance stakeholders. 

Fourth, the FinOps guardrails depend on the accuracy and 
stability of attribution and forecasting signals used to evaluate 
spend risk. Tag-based allocation assumes consistent tagging 
discipline across environments and services, and even small 
gaps can reduce allocation coverage. Pre-deployment cost 
estimation is inherently approximate because runtime behavior, 
workload seasonality, and scaling policies can change 
consumption after release. As a result, cost policies may either 
under-block risky changes or over-block legitimate changes 
unless the organization maintains realistic spend envelopes and 
continuously refines estimation rules. 

Fifth, the evaluation results presented in this paper are 
illustrative and are used to demonstrate expected directional 
outcomes rather than measured guarantees in a specific 
production environment. Real-world outcomes will vary based 
on workload characteristics, deployment topology, CI/CD 
tooling, the maturity of security and finance operations, and the 
strictness of policy thresholds. Additional empirical studies 
with production-grade telemetry would be required to quantify 
the benefits across diverse healthcare application types and 
organizational settings. 

Finally, governance and human factors remain critical. The 
proposed pipeline can enforce controls and generate evidence, 
but it does not replace the need for disciplined change 
management, incident response readiness, and clear 
accountability for exceptions. If teams frequently bypass gates 
without time bounded justification, or if evidence retention is 
not treated as an operational requirement, audit readiness can 
degrade despite strong technical design. These limitations 
suggest that successful adoption requires not only tooling 
integration, but also well-defined ownership, periodic policy 
review, and operational practices aligned with regulated 
healthcare delivery. 

IX. CONCLUSION AND FUTURE WORK 
This paper addressed a practical gap in regulated healthcare 

delivery: security and compliance controls are often embedded 
into DevSecOps pipelines, while cost governance and supply-
chain assurance remain fragmented across separate tools and 
teams. For HIPAA-relevant workloads on AWS, this 
fragmentation weakens auditability and increases exposure to 
both technical risk (dependency compromise, build tampering, 
artifact substitution, configuration drift) and financial risk 
(untagged spend, environment sprawl, uncontrolled resource 
growth). The proposed FinOps-aware DevSecOps pipeline 
unifies these concerns by treating release promotion as an 
auditable contract that requires three forms of evidence to travel 
together from build to production: an immutable artifact 

identifier, an SBOM that provides component-level 
transparency, and SLSA-aligned provenance that links the 
artifact to its source and build context. A single policy-as-code 
layer evaluates this evidence alongside security and 
HIPAAoriented control checks and enforces FinOps guardrails 
as first-class release criteria, thereby shifting cost 
accountability and supply-chain integrity checks to the same 
stage where organizations already enforce security gates. 

The key outcome is improved end-to-end traceability with 
a governance model that is repeatable and reviewable. By 
promoting only digest-pinned artifacts and persisting policy 
decisions, SBOMs, provenance records, and validation outputs 
as evidence bundles, the pipeline supports audit-critical 
questions without relying on manual reconstruction from 
scattered logs. At the same time, cost governance becomes 
operational rather than advisory: allocation requirements and 
spend-risk constraints can block promotion before inefficient 
configurations reach higher environments. Importantly, the 
approach is designed to be practical for real delivery teams. It 
does not require a single CI/CD product, and it allows 
incremental adoption, beginning with evidence capture and 
digest-based promotions, and then expanding to stricter policy 
gating as organizational maturity increases. 

Future work will focus on strengthening the fidelity and 
usability of evidence and improving the precision of policy 
decisions. On the supply-chain side, this includes richer 
provenance capture for multi-stage builds, tighter integration of 
SBOM records with vulnerability and license workflows, and 
systematic evaluation of how evidence completeness changes 
under different build and deployment patterns. On the 
governance side, future work includes extending policy 
coverage to workload-specific controls commonly observed in 
healthcare environments, improving exception handling so that 
necessary overrides remain auditable and time-bounded, and 
reducing pipeline overhead through parallel validation and 
caching strategies without weakening determinism. From a 
FinOps perspective, future work includes refining cost 
guardrails using workload-aware unit-cost models and more 
robust pre-deploy estimation techniques, while maintaining 
conservative controls suitable for HIPAA-oriented systems. 
Collectively, these directions aim to preserve the central design 
principle demonstrated in this paper: releases should be 
promotable only when they carry verifiable supply-chain 
evidence and satisfy a unified, auditable policy contract 
spanning security, compliance, and cost. 
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