
DevSecOps Aware in Healthcare:

SBOM-Driven Supply-Chain Assurance (SLSA)
with Policy-Based Cost Guardrails and Continuous

Security Validation

Nagarjuna Nellutla
Independent Researcher
Eagan, MN, USA 55123

nagarjunanellutla9@gmail.com

Abstract—Healthcare cloud systems must satisfy strict
security and compliance controls while operating under
constrained budgets. Traditional DevSecOps pipelines improve
delivery velocity but often treat cost governance and supply-chain
assurance as separate concerns, leaving gaps in artifact
traceability, dependency risk visibility, and budget enforcement.
This paper proposes a FinOps-aware DevSecOps pipeline for
healthcare workloads that integrates software bill of materials
(SBOM) generation, SLSA-aligned supply-chain assurance
checkpoints, and policy-as-code gates that jointly enforce security,
compliance, and cost guardrails from build to deployment. The
approach emphasizes auditable evidence, artifact integrity, and
continuous validation to reduce release risk and cost drift without
undermining delivery performance.

Index Terms—FinOps, DevSecOps, Healthcare Cloud, SBOM,
Supply Chain Security, SLSA, Policy-as-Code, Compliance
Automation, Cloud Cost Governance

I. INTRODUCTION
Healthcare organizations increasingly rely on cloud

platforms to scale clinical and operational services, improve
availability, and accelerate delivery of digital capabilities. For
workloads that handle electronic protected health information
(ePHI), faster delivery must be balanced with HIPAA-aligned
safeguards, including strong access control, reliable auditability,
integrity protections, and secure transmission and storage
practices. At the same time, cloud consumption introduces
persistent financial pressure. CI workloads, multi-environment
sprawl, oversized resources, and ungoverned data transfer can
amplify spend quickly, often faster than teams can detect or
correct it. In many organizations, security and compliance
controls have matured within CI/CD through scanning and
automated checks, while cost governance remains external to
the delivery process and is addressed through reporting,
periodic optimization, or finance-led review cycles. This
separation creates a structural weakness: a release can be
“secure enough” to pass technical gates, yet still introduce
avoidable cost drift and produce incomplete, hard-to-audit
evidence chains.

Software supply-chain risk compounds this challenge.
Modern healthcare applications are assembled from extensive
third party dependencies, container images, and managed build
services, and the delivery pipeline itself becomes part of the

attack surface. When dependency inventories are incomplete
and build provenance is not verifiable, it becomes difficult to
answer audit-critical questions with confidence: precisely what
was deployed, which components were included, and whether
the artifact originated from an approved, tamper-resistant build
process. These gaps are not only operationally costly during
incident response and audits; they also undermine governance
because controls are evaluated without a deterministic link to
the artifacts that run in production.

This paper presents a FinOps-aware DevSecOps pipeline
for HIPAA-relevant healthcare workloads on AWS that unifies
supply-chain assurance and cost governance with continuous
security validation. The pipeline binds every deployable artifact
to an immutable identifier and attaches two evidence primitives:
a software bill of materials (SBOM) that provides component-
level transparency and SLSA-aligned provenance that links the
artifact to its source and build context. A single policy-as-code
layer then evaluates security, compliance relevant checks, and
FinOps guardrails as promotion criteria, producing audit-ready
decision records that are stored as release evidence. The result
is a delivery model in which cost accountability and supply-
chain integrity are enforced at the same point where
organizations already enforce security gates, improving
traceability and reducing both release risk and cost drift while
preserving a practical workflow suitable for healthcare delivery
teams.

II. II. BACKGROUND AND RELATED WORK
HIPAA’s Security Rule establishes safeguards for ePHI [1],

motivating technical controls around access, audit, integrity,
and transmission security. In cloud-native environments,
guidance on container and micro service security emphasizes
defense-in-depth and continuous validation to reduce
misconfiguration and runtime risk [2]. FinOps formalizes
cross-functional accountability [3] for cloud cost management
and promotes practices such as allocation, budgeting, and
continuous optimization. SBOM standards such as SPDX [4]
and Cyclone [5] enable structured dependency inventories that
support vulnerability response and auditability. SLSA provides
a framework for improving build integrity and provenance to
reduce tampering and increase traceability from source to
artifact [6]. Policy-as-code approaches enable machine
evaluable governance checks to be enforced consistently across
delivery workflows while producing decision evidence.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

124

mailto:nagarjunanellutla9@gmail.com

III. PROBLEM STATEMENT AND THREAT MODEL

A. Problem Statement
Healthcare delivery teams need an end-to-end pipeline that

provides auditable assurance for workloads handling ePHI
while preventing cost drift. The pipeline must ensure that every
deployed artifact is traceable to its source and build context,
that an SBOM and verifiable provenance exist for what is
promoted, that security and compliance controls are evaluated
continuously through automated gates, and that cost
governance is enforced as a first-class release criterion rather
than a post-deployment reporting activity. Current
implementations frequently meet these needs partially and in
disconnected tooling, which leads to inconsistent enforcement
and incomplete evidence during audits.

B. Threat Model
This work considers adversarial and operational risks across

the software supply chain, cloud configuration, and financial
governance. Supply-chain risks include dependency
compromise through malicious packages or compromised
upstream sources, as well as build tampering via compromised
CI runners or injected build steps. Deployment risks include
image drift and artifact substitution, where unverified images
or images lacking required SBOM/provenance are promoted.
Additional risks include secret leakage through logs or artifacts,
and compliance drift caused by insecure IAM policies, missing
encryption or logging, or unintended network exposure of
systems that process ePHI. Finally, cost drift risks include
untagged spend, oversized compute, runaway CI workloads,
uncontrolled data egress, and environment sprawl. The
proposed architecture reduces likelihood and blast radius by
combining SBOM transparency, SLSA-aligned provenance
verification, and unified policy gates for security, compliance,
and cost.

IV. PROPOSED ARCHITECTURE AND SYSTEM
DESIGN

A. Pipeline Overview (AWS Reference Design)
The proposed FinOps-aware DevSecOps pipeline binds

each release to an immutable artifact, an SBOM, and verifiable
provenance metadata, and then enforces unified policy gates for
security, HIPAA-relevant compliance controls, and cost
guardrails before promotion across environments [7]. Artifacts
are promoted by digest to prevent tag-based ambiguity, and
each promotion produces evidence records that are stored for
audit retrieval.

Figure 1 summarizes the end-to-end release lifecycle and
the evidence that is generated and persisted at each stage. The
design highlights how SBOMs, provenance, scans, and policy
decisions are bound to digest-pinned artifacts to support
auditability and controlled promotion.

B. Account and Environment Segmentation
The reference deployment uses AWS Organizations with

separate accounts for development, testing, and production to
reduce blast radius and support segregation of duties.
Centralized logging and security monitoring operate from a
dedicated

Fig. 1. Evidence-bound FinOps-aware DevSecOps pipeline on AWS.

SBOMs, provenance records, scan outputs, and policy decisions are
stored as release evidence and linked to digest pinned promotions.

Security/logging account [8]. Network boundaries rely on
VPC segmentation and private subnets for systems handling
ePHI, with controlled service access patterns that reduce
unnecessary exposure while preserving operational
observability. Figure 2 depicts the AWS multi-account
segmentation used to reduce blast radius and centralize security
logging and evidence retention. This structure supports
segregation of duties and simplifies audit reconstruction across
development, test, and production environments.

Source

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

125

Fig. 2. AWS multi-account segmentation aligned with HIPAA relevant

governance. Centralized security/logging and evidence retention
support auditability and blast-radius reduction.

C. Build, Artifact, and Evidence Stores
Source changes trigger a CI workflow that performs

controlled builds and produces deployable artifacts. Container
images are stored in Amazon ECR and referenced by
immutable digests rather than mutable tags. Audit evidence—
SBOM files, provenance attestations, scan summaries, and
policy decisions—is stored in an append-only manner in an
evidence store (e.g., Amazon S3 with retention controls [9]),
enabling later reconstruction of what was deployed and which
checks were satisfied.

D. SBOM Generation and Binding to Artifacts
During build, an SBOM is generated for application

dependencies and container images, then stored alongside the
corresponding image digest [10]. The pipeline requires that the
SBOM record matches the immutable artifact identifier prior to
promotion, ensuring that dependency inventory is directly tied
to what runs in each environment. This linkage supports rapid
exposure analysis during vulnerability response and improves
auditability by making deployed composition explicit.

E. SLSA-Aligned Provenance Checkpoints
The pipeline produces provenance metadata describing the

source reference, build definition, build environment identity,
and the resulting artifact digest [11]. Provenance records are
cryptographically protected using managed key controls and
stored as evidence. Promotion stages verify the presence and
integrity of provenance before allowing deployment, reducing
the risk of artifact substitution and strengthening traceability
from code to runtime.

F. Continuous Security, Compliance, and Cost Validation
Security and compliance validation occurs both before

deployment and after deployment. Pre-deploy gates evaluate
infrastructure and application changes, enforce vulnerability
and secret-handling thresholds, and require policy conformance
before promotion. Post-deploy validation detects configuration
drift, aggregates security findings, and centralizes audit trails
for identity and workload activity. In parallel, FinOps
guardrails are enforced as release criteria through policy
evaluation, preventing promotion when allocation tagging is
missing, when projected spend exceeds predefined envelopes,
or when resource and egress configurations violate cost
governance constraints. Policy decisions and their rationales
are recorded as evidence artifacts to support repeatable
governance and audit readiness.

G. Policy-as-Code Enforcement and Audit Evidence
Packaging
A unified policy-as-code layer evaluates security,

compliance, and cost rules using SBOMs, provenance, scan
outputs, infrastructure plans, and deployment manifests as
inputs, and produces allow/deny decisions with structured
reasons [12]. These policy decisions are stored and linked to
release identifiers and artifact digests. For HIPAA-oriented
audit workflows, each release yields an evidence bundle that
includes SBOM, provenance, validation outputs, and
deployment metadata, enabling rapid reconstruction of what
ran in production and under which controls.

V. V. IMPLEMENTATION APPROACH
This section describes a practical implementation on AWS

that remains consistent with HIPAA-oriented controls and the
supply-chain and FinOps objectives defined earlier. The
implementation is intentionally modular so that organizations
can adopt the evidence model (SBOM, provenance, policy
decisions) without requiring a single CI/CD product or a single
deployment platform. Table I enumerates the evidence artifacts
captured across the lifecycle and stored as a release bundle.
This evidence model enables deterministic reconstruction of
deployments from immutable artifact digests.

Source changes trigger a controlled build stage that
produces a container image and attaches two evidence artifacts
to the release: an SBOM and a provenance record.

TABLE I. EVIDENCE ARTIFACTS CAPTURED ACROSS THE RELEASE
LIFECYCLE

Stage Evidence captured (stored as release
bundle)

Build/Test Build logs, test results, artifact digest,
CI identity metadata

SBOM SBOM document bound to immutable
artifact digest

Provenance Provenance record linking source
revision, build context, and digest

Scan/Validate Vulnerability summaries, IaC findings,
secrets checks, config checks

Policy Gate Signed allow/deny decision with
reasons and evaluated inputs

Deploy/Runtime Deployment metadata, drift findings,
audit trail references

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

126

TABLE II. UNIFIED POLICY-AS-CODE INPUTS ACROSS SECURITY,
COMPLIANCE, AND FINOPS

Policy domain Primary evaluated inputs
Security SBOM, scan outputs, container metadata,

secrets checks, IAM deltas
Compliance Encryption/logging configurations, network

exposure, audit trail presence
FinOps Mandatory tags, planned resource changes,

projected spend signals, egress signals

Container image is stored in Amazon ECR and referenced
by immutable digest during promotion to prevent tag ambiguity.
Evidence artifacts are stored in Amazon S3 with versioning and
retention controls to support audit retrieval, while
cryptographic protection for integrity is provided through AWS
KMS-managed keys [13]. Operational audit trails and access
logs are captured through AWS-native logging mechanisms,
enabling reconstruction of who changed what and when for
release-critical actions. Table II summarizes the unified
policyas-code domains and the primary inputs evaluated for
each domain. Using shared inputs reduces governance
fragmentation and improves consistency of promotion
decisions.

Security validation is integrated into the pipeline through
repeatable checks over infrastructure and application artifacts.
Infrastructure changes are evaluated before deployment using
policy evaluation on infrastructure definitions and planned
changes, and runtime configurations are monitored for drift
using continuous configuration assessment. Container and
dependency exposure is handled by enforcing that releases
contain SBOMs bound to immutable digests, and by applying
policy thresholds that block promotion when risk is
unacceptable. The same policy layer also enforces governance
requirements that are typically treated as “after deployment”
concerns, such as mandatory allocation tags and environment-
specific constraints on resource sizing and spend envelopes.

FinOps guardrails are implemented as a release criterion
rather than a periodic reporting activity. Cost allocation is
enforced by rejecting promotions when required tags are
missing, and budget adherence is enforced by evaluating
projected spend signals derived from environment baselines
and planned changes. This approach ensures that financially
risky releases do not reach higher environments without
explicit exception handling, and it produces policy decision
evidence that can be audited alongside security and compliance
evidence.

VI. EVALUATION METHODOLOGY
The evaluation is conducted as an illustrative case study

using a controlled AWS-based reference environment
representative of a healthcare micro service deployment. The
baseline is a conventional DevSecOps pipeline that includes
standard build, test, and security scanning prior to deployment.
The proposed pipeline adds SBOM generation and binding to
immutable artifact digests, SLSA-aligned provenance creation
and verification, and unified policy-as-code gates that enforce
security, HIPAA-relevant control checks, and FinOps
guardrails prior to promotion.

To keep the comparison fair, both pipelines use the same
codebase, the same functional test suite, the same release
cadence, and the same environment topology. The reported
results focus on four categories: security effectiveness,
compliance evidence completeness, FinOps governance
outcomes, and delivery overhead. Security effectiveness is
assessed by the rate at which vulnerable or non-compliant
artifacts are blocked before promotion. Evidence completeness
is assessed by whether each production deployment can be
reconstructed from immutable artifact identifiers and
accompanying SBOM and provenance records. FinOps
governance is assessed by allocation completeness through
mandatory tags and by adherence to spend envelopes enforced
at promotion time. Delivery overhead is assessed by added
pipeline latency at median (p50) and tail (p95) levels.

All values reported are illustrative to demonstrate expected
directional outcomes under the stated design assumptions and
do not represent a claim about a specific production
deployment.

VII. RESULTS AND DISCUSSION
This section reports illustrative outcomes comparing the

baseline pipeline and the proposed FinOps-aware DevSecOps
pipeline. The results emphasize how SBOM and provenance
improve traceability, how policy-as-code reduces risky
promotions, and how cost guardrails shift governance earlier in
the lifecycle. The discussion also quantifies delivery overhead
introduced by additional evidence creation and policy
evaluation.

A. Security Outcomes
In the baseline pipeline, releases were primarily blocked by

vulnerability scanning when issues exceeded a severity
threshold. In the proposed pipeline, releases were additionally
blocked when SBOM or provenance evidence was missing or
when provenance verification failed policy requirements.
Under the illustrative setup, the proposed pipeline increased
pre-production blocking of high-risk promotions from 62% to
88%, reflecting the combined impact of evidence requirements
and stricter policy gating.

TABLE III. ILLUSTRATIVE COMPARISON: BASELINE DEVSECOPS VS

Proposed FinOps-Aware DevSecOps
Metric Baseline Proposed
Blocked high-risk
promotions (%)

62 88

Evidence completeness per
release (%)

70 98

Tagged allocation coverage
(%)

76 99

Spend variance vs envelope
(%)

18 6

Added pipeline duration p50
(min)

0.0 1.6

Added pipeline duration p95
(min)

0.0 4.2

B. Compliance Evidence Completeness
Audit readiness requires the ability to answer what was

deployed, when it was deployed, and under which controls it

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

127

was approved and verified. In the baseline pipeline, evidence
was fragmented across CI logs and deployment metadata,
reducing the ability to reconstruct deployments
deterministically. In the proposed pipeline, each deployment is
linked to an immutable digest with an SBOM and provenance
record stored in the evidence repository. In the illustrative
results, evidence completeness improved from 70% to 98%,
with the remaining gap attributed to early-stage integration
errors and incomplete metadata capture in non-critical
environments.

C. FinOps Governance Outcomes
The baseline pipeline did not enforce cost allocation or

spend envelopes at promotion time, which led to untagged
resources and periodic spend spikes that were only detected
after deployment. The proposed pipeline enforces mandatory
tagging and evaluates coast guardrails prior to promotion. In
the illustrative results, tagged allocation coverage improved
from 76% to 99%, and monthly spend variance versus the
predefined envelope decreased from 18% to 6%, driven by
rejecting promotions that introduced disallowed resource sizing
or missing allocation metadata.

D. Delivery Overhead
Strengthening assurance introduces additional pipeline

steps for SBOM generation, provenance creation, and policy
evaluation. In the illustrative results, the proposed pipeline
increased median pipeline duration by 1.6 minutes and p95
duration by 4.2 minutes. The overhead was primarily
attributable to evidence generation and verification, while
policy evaluation contributed a smaller fraction. This overhead
is generally acceptable for healthcare workloads where
auditability and controlled change are prioritized, but it should
be tuned based on organizational release frequency and risk
tolerance.

E. Summary of Comparative Results
Table III summarizes the illustrative comparison across the

four categories.

 Blocked Evidence Tagged Variance

 Baseline Proposed

Fig. 3. Illustrative comparison of key metrics (higher is better except
variance).

 Baseline (illustrative) Proposed
(illustrative)

Fig. 4. Illustrative trade-off between added pipeline overhead and an
aggregate assurance score derived from evidence completeness and
pre-promotion risk blocking.

F. Visualization
Fig. 3 visualizes the comparative improvements for the key

assurance and governance metrics using the illustrative values.

The results indicate that coupling SBOM and provenance
evidence with unified policy enforcement can materially
improve auditability and reduce both security and cost risks
before deployment. The primary trade-off is modest pipeline
overhead, which can be mitigated through caching, parallel
validation, and policy tuning while preserving deterministic
evidence linkage. Figure 4 illustrates the expected trade-off
between additional pipeline overhead and improved release
assurance. The proposed approach increases verification work
modestly while materially strengthening evidence
completeness and pre-promotion risk blocking.

VIII. LIMITATIONS
The proposed approach is intended to improve auditability

and governance for HIPAA-relevant healthcare workloads, but
its effectiveness depends on several technical and
organizational constraints. First, SBOM completeness is
bounded by build visibility and dependency resolution fidelity.
If the build process pulls dependencies dynamically at runtime,
relies on opaque vendor components, or includes unmanaged
binaries, the resulting SBOM may be incomplete or may not
reflect the precise composition of the deployed artifact.
Similarly, SBOM quality can vary across languages and
packaging ecosystems, which can affect downstream
vulnerability and license analysis.

Second, provenance assurance is only as strong as the
integrity of the build environment that produces it. If CI runners
are misconfigured, lack isolation, or permit untrusted build
steps, provenance records may not provide meaningful
guarantees even if they are formally present. Provenance
verification also requires consistent identity and key
management practices; weak controls around signing keys, role
assumptions, or pipeline permissions can reduce the
trustworthiness of evidence bundles. In multi-stage builds and
complex dependency chains, capturing accurate provenance
may introduce additional engineering effort and operational
overhead.

0

50

100

62 70 76

18

88
98 99

6

0 1 2 3 4 5

60

80

100

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

128

Third, policy-as-code enforcement introduces the risk of
false positives and workflow friction. Strict policy gates can
block releases due to transient scanning results, incomplete
metadata, or conservative thresholds that do not reflect
application context. While such strictness may be desirable in
regulated environments, it can also increase lead time if
exception handling and policy tuning are not well-governed.
Conversely, overly permissive policies can weaken the
intended benefits and reintroduce governance fragmentation.
Achieving the right balance requires iterative tuning and clear
ownership across security, platform, and finance stakeholders.

Fourth, the FinOps guardrails depend on the accuracy and
stability of attribution and forecasting signals used to evaluate
spend risk. Tag-based allocation assumes consistent tagging
discipline across environments and services, and even small
gaps can reduce allocation coverage. Pre-deployment cost
estimation is inherently approximate because runtime behavior,
workload seasonality, and scaling policies can change
consumption after release. As a result, cost policies may either
under-block risky changes or over-block legitimate changes
unless the organization maintains realistic spend envelopes and
continuously refines estimation rules.

Fifth, the evaluation results presented in this paper are
illustrative and are used to demonstrate expected directional
outcomes rather than measured guarantees in a specific
production environment. Real-world outcomes will vary based
on workload characteristics, deployment topology, CI/CD
tooling, the maturity of security and finance operations, and the
strictness of policy thresholds. Additional empirical studies
with production-grade telemetry would be required to quantify
the benefits across diverse healthcare application types and
organizational settings.

Finally, governance and human factors remain critical. The
proposed pipeline can enforce controls and generate evidence,
but it does not replace the need for disciplined change
management, incident response readiness, and clear
accountability for exceptions. If teams frequently bypass gates
without time bounded justification, or if evidence retention is
not treated as an operational requirement, audit readiness can
degrade despite strong technical design. These limitations
suggest that successful adoption requires not only tooling
integration, but also well-defined ownership, periodic policy
review, and operational practices aligned with regulated
healthcare delivery.

IX. CONCLUSION AND FUTURE WORK
This paper addressed a practical gap in regulated healthcare

delivery: security and compliance controls are often embedded
into DevSecOps pipelines, while cost governance and supply-
chain assurance remain fragmented across separate tools and
teams. For HIPAA-relevant workloads on AWS, this
fragmentation weakens auditability and increases exposure to
both technical risk (dependency compromise, build tampering,
artifact substitution, configuration drift) and financial risk
(untagged spend, environment sprawl, uncontrolled resource
growth). The proposed FinOps-aware DevSecOps pipeline
unifies these concerns by treating release promotion as an
auditable contract that requires three forms of evidence to travel
together from build to production: an immutable artifact

identifier, an SBOM that provides component-level
transparency, and SLSA-aligned provenance that links the
artifact to its source and build context. A single policy-as-code
layer evaluates this evidence alongside security and
HIPAAoriented control checks and enforces FinOps guardrails
as first-class release criteria, thereby shifting cost
accountability and supply-chain integrity checks to the same
stage where organizations already enforce security gates.

The key outcome is improved end-to-end traceability with
a governance model that is repeatable and reviewable. By
promoting only digest-pinned artifacts and persisting policy
decisions, SBOMs, provenance records, and validation outputs
as evidence bundles, the pipeline supports audit-critical
questions without relying on manual reconstruction from
scattered logs. At the same time, cost governance becomes
operational rather than advisory: allocation requirements and
spend-risk constraints can block promotion before inefficient
configurations reach higher environments. Importantly, the
approach is designed to be practical for real delivery teams. It
does not require a single CI/CD product, and it allows
incremental adoption, beginning with evidence capture and
digest-based promotions, and then expanding to stricter policy
gating as organizational maturity increases.

Future work will focus on strengthening the fidelity and
usability of evidence and improving the precision of policy
decisions. On the supply-chain side, this includes richer
provenance capture for multi-stage builds, tighter integration of
SBOM records with vulnerability and license workflows, and
systematic evaluation of how evidence completeness changes
under different build and deployment patterns. On the
governance side, future work includes extending policy
coverage to workload-specific controls commonly observed in
healthcare environments, improving exception handling so that
necessary overrides remain auditable and time-bounded, and
reducing pipeline overhead through parallel validation and
caching strategies without weakening determinism. From a
FinOps perspective, future work includes refining cost
guardrails using workload-aware unit-cost models and more
robust pre-deploy estimation techniques, while maintaining
conservative controls suitable for HIPAA-oriented systems.
Collectively, these directions aim to preserve the central design
principle demonstrated in this paper: releases should be
promotable only when they carry verifiable supply-chain
evidence and satisfy a unified, auditable policy contract
spanning security, compliance, and cost.

REFERENCES
[1] K. J. Nahra, “Hipaa security enforcement is here,” IEEE Security &

Privacy, vol. 6, no. 6, pp. 70–72, 2008.
[2] P. Haindl, P. Kochberger, and M. Sveggen, “A systematic literature

review of inter-service security threats and mitigation strategies in
microservice architectures,” IEEE Access, vol. 12, pp. 90252–90286,
2024.

[3] D. Burke, “Improving finops procedures with automation tools and
framework changes for a cloud environment,” Master’s thesis, Aalto
University, School of Electrical Engineering, Sep. 2024, permanent
link: https://urn.fi/URN:NBN:fi:aalto-202411217270. [Online].
Available:

https://aaltodoc.aalto.fi/items/0670f49c-3d66-44e7-a2d7-d47c7a314f36
[4] S. H. B. I. Kumar, L. R. Sampaio, A. Martin, A. Brito, and C. Fetzer, “A

comprehensive study on the impact of vulnerable dependencies on

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

129

https://aaltodoc.aalto.fi/items/0670f49c-3d66-44e7-a2d7-d47c7a314f36

open-source software,” in 2024 IEEE 35th International Symposium on
Software Reliability Engineering (ISSRE), 2024, pp. 96–107.

[5] M. Balliu, B. Baudry, S. Bobadilla, M. Ekstedt, M. Monperrus, J. Ron,
A. Sharma, G. Skoglund, C. Soto-Valero, and M. Wittlinger,
“Challenges of producing software bill of materials for java,” IEEE
Security & Privacy, vol. 21, no. 6, pp. 12–23, 2023.

[6] S. Zhou, H. Wu, and Z. Xue, “Grouped subspace linear semantic
alignment for hyperspectral image transfer learning,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–16,
2022.

[7] X. Sun, Y. Cheng, X. Qu, and H. Li, “Design and implementation of
security test pipeline based on devsecops,” in 2021 IEEE 4th Advanced
Information Management, Communicates, Electronic and Automation
Control Conference (IMCEC), vol. 4, 2021, pp. 532–535.

[8] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in 2015 IEEE 25th International Workshop on
Machine Learning for Signal Processing (MLSP), 2015, pp. 1–6.

[9] Nellutla, N. (2022). Secure DevSecOps Workflows for Medical IoT
Device Integration in Smart Hospitals. International Journal of AI,
BigData, Computational and Management Studies, 3(1), 114-
122. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P113

[10] A. Srivastava, “Automated deployment of an end-to-end pipeline on
amazon web services for real-time visual inspection using fast
streaming high-definition images,” Master’s thesis, Clemson
University, 2019.

[11] S. Yu, W. Song, X. Hu, and H. Yin, “On the correctness of
metadatabased sbom generation: A differential analysis approach,” in
2024 54th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2024, pp. 29–36.

[12] H. T. Phan and N. T. Nguyen, “A fuzzy graph convolutional network
model for sentence-level sentiment analysis,” IEEE Transactions on
Fuzzy Systems, vol. 32, no. 5, pp. 2953–2965, 2024.

[13] R. Rompicharla and B. R. P. V, “Continuous compliance model for
hybrid multi-cloud through self-service orchestrator,” in 2020
International Conference on Smart Technologies in Computing,
Electrical and Electronics (ICSTCEE), 2020, pp. 589–593.

[14] I. Saeed, S. Baras, and H. Hajjdiab, “Security and privacy of aws s3 and
azure blob storage services,” in 2019 IEEE 4th International
Conference on Computer and Communication Systems (ICCCS), 2019,
pp. 388–394.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume X and Issue I

130

https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P113

	I. INTRODUCTION
	II. II. BACKGROUND AND RELATED WORK
	III. PROBLEM STATEMENT AND THREAT MODEL
	A. Problem Statement
	B. Threat Model

	IV. PROPOSED ARCHITECTURE AND SYSTEM DESIGN
	A. Pipeline Overview (AWS Reference Design)
	B. Account and Environment Segmentation
	C. Build, Artifact, and Evidence Stores
	D. SBOM Generation and Binding to Artifacts
	E. SLSA-Aligned Provenance Checkpoints
	F. Continuous Security, Compliance, and Cost Validation
	G. Policy-as-Code Enforcement and Audit Evidence Packaging

	V. V. IMPLEMENTATION APPROACH
	VI. EVALUATION METHODOLOGY
	VII. RESULTS AND DISCUSSION
	A. Security Outcomes
	B. Compliance Evidence Completeness
	C. FinOps Governance Outcomes
	D. Delivery Overhead
	E. Summary of Comparative Results
	F. Visualization

	VIII. LIMITATIONS
	IX. CONCLUSION AND FUTURE WORK
	REFERENCES

