
Asian Journal of Convergence in Technology Volume III, Issue II
ISSN No.:2350-1146, I.F-2.71

www.asianssr.org ID: 851

SQL to NoSQL Transformation System using Data

Adapter and Analytics

Ganesh B. Solanke

Department of Computer Engineering

Pimpri Chinchwad College of Engineering

Pune, India

solankeganesh777@gmail.com

Sudarshan S. Deshmukh

Department of Computer Engineering

Pimpri Chinchwad College of Engineering

Pune, India

Deshmukh.sudarshan@gmail.com

Abstract— Popularity of big data in cloud computing is growing

tremendously nowadays. Data production rate has become

explosive. Many existing systems need to expand their service to

support explosive data generation rate. NoSQL database are

suitable to handle large volume of data. This paper proposes a data

adapter which supports hybrid database systems, NoSQL databases

and relational databases. Also, a seamless mechanism is provided

for hybrid database system construction, which enables access to

both databases at same time. This paper focuses on the automated

transformation of multi-structured data hybrid systems. Hybrid

database systems provide access to either relational database or

NoSQL database, per data size. The proposed data adapter supports

application queries and database transformation at same time,

which in turn speed up the process. Three different approaches are

proposed for queries on database. Blocking transformation mode,

blocking truncation mode, direct access mode. This paper also

discusses the integration of Pentaho business analytics tool with

proposed data adapter, for big data predictive analytics. This

integration focuses on empowering users to prepare, model and

visualize and explore data sets stored in NoSQL databases. This

paper describes the design of the data adapter in detail.

Keywords— NoSQL, Big data, Data adapter, Hybrid database,

Data analytics.

I. INTRODUCTION (HEADING 1)

Big data is a widespread nowadays. Big data represents the
large and fast growing size of information that is mostly
unused by existing analytical applications and data
warehousing systems. Organizations are interested in storing,
monitoring and analyzing this data because it can add
significant value to the decision-making process. Such
processing, however, may involve complex loads that thrust the
limits of what is possible using old-style data warehousing and
data management techniques and technologies.

NoSQL databases developed because of the exponential
growing of the Internet and the growth of web applications.
NoSQL databases provide efficient and faster access on big
data. Large organizations and enterprises are moving towards
NoSQL database for analysis and quicker access on big data.
Cassandra is key value oriented type of NoSQL database

discussed in this paper, which is highly scalable and high
performance distributed database.

Instead of substituting existing relational database,
enterprises and big organizations are moving towards hybrid
SQL-NoSQL database solution. Hybrid SQL-NoSQL database
solutions combine the advantage of being well-suited with
many SQL applications and enabling the scalability of NoSQL.
In hybrid solution, applications communicate with relational
database to handle requests for small and scale of data. Queries
demanding large amount of data are handled using NoSQL
data. NoSQL database works as pool of data and provides
batch operations, back-ups, and analysis.

Hybrid database designs affect the existing system design.
In existing system, application use SQL queries to
communicate with relational database. NoSQL database can’t
be accessed by SQL, and modification of the design to access
both relational and NoSQL database. Data transformation
mechanism is needed after integration of NoSQL with existing
relational database system. The transformation suspends and
blocks application for data synchronization. Large data
transformation takes larger time, which in turns becomes
serious issue for some real-time, unstoppable services.

Hybrid database designs affect the current system design.
In existing system, application use SQL queries to
communicate with relational database. NoSQL database can’t
be accessed by SQL, and needs to change the design to access
both relational and NoSQL database. Data transformation
mechanism is needed after integration of NoSQL with existing
relational system. The transformation suspends and blocks
application for data synchronization. Large data transformation
takes larger time, which in turns becomes critical issue for
some real-time, non-stopping services.

Data adapter consist following features:

1. Single SQL interface:

Single SQL interface is used to access both relational and

NoSQL database. It includes SQL query parser and query

translator. The Simba’s Technologies Cassandra ODBC

Driver [1] enables direct SQL query translation to the

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume III, Issue II
ISSN No.:2350-1146, I.F-2.71

www.asianssr.org ID: 851

Cassandra Query Language (CQL), and offers users

unparalleled performance at scale. The in-built Cooperative

Query Execution (CQE) passes down filters and aggregations

to provide upgraded access performance to Cassandra.

Existing application design does not need modification to

work with NoSQL database, by using existing SQL interface.

2. Database converter:

Datastax enterprise 2.0 [2] include support for Apache

sqoop [3], which is a tool designed to transfer data between an

RDBMS and Hadoop. DataStax Enterprise combines

Cassandra, Hadoop together into one big data platform, which

can now move data to Hadoop and Cassandra as well. Apache

sqoop is a tool for transferring bulk data between relational

database and NoSQL database. Data synchronization is

handled by synchronization mechanism after each relational

database table transformation. The queries arrived during

transformation are blocked and patched later.

3. Query approach:

Three different approaches are proposed for query

execution. Transformation blocking approach, dump blocking

approach and direct access approach.

This paper discusses all tools and approaches in detail for
transformation from relational to NoSQL database and
application query executions. The paper is organized as
follows. Section II discusses related work. Section III presents
design of proposed hybrid system using data adapter. Section
IV discusses various query approaches for synchronization
mechanism. Section V discusses theoretical analysis of time
and overhead. Section VI presents the conclusion and future
work.

II. RELATED WORK

OpenStack [4] is open source cloud computing software and

allow users to build their cloud platform. Users can design and

develop big data applications in short time using OpenStack

platforms. Instead of forming clusters, users can focus more

on design and development of applications using online

platforms of cloud computing. Hashem Yaqoob [5], has

discussed comparison and analysis of multiple big data cloud

platforms like Google, Microsoft, Amazon and Cloudera.

Various big data tools are emerged for development of big

data analytics system.CLP Chen [6], has discussed challenges,

techniques and technologies for big data with principles for

designing big data.

There has been huge work done on different NoSQL

databases [7] like BigTable [8], HBase [9, 10], MongoDB

[11], and Cassandra [12] for big data [13, 14]. NoSQL is a

new breed of database that has risen to the big data

challenge—the Not Only SQL (NoSQL) database. NoSQL

provide efficient storage and access for big data. In this paper,

Cassandra [15] is a NoSQL database in the data adapter

system. Apache Cassandra database is the right NoSQL

database choice for scalability and high availability without

compromising performance.

NoSQL is capable to manage big data, but relational

database is efficient to manage middle or small amount of

data. Multiples works on hybrid database system has discussed

integration of databases. R Cattell [16] has discussed scalable

SQL and NoSQL data stores for simple OLTP-like

applications. M Fazio [17] has discussed the need of hybrid

storage approach for IoT and also proposed two-layer

architecture based on hybrid storage system, which supports

Platform as a Service. Architecture hybrid database system

and data transformation approaches depend on the types of

applications and their services. K A Doshi [18] has discussed

types of applications. Doshi has classified data growth types

as horizontal, vertical and chronological. Various suitable

approaches are also proposed for blending SQL and NewSQL

platforms depending on data growth. Synchronization is

handled by integrator.

The architecture proposed in this paper integrates relational

and NoSQL database, and manages continuously growing data

and handle queries in real time as well. To handle queries on

hybrid database system in real time, schema mapping is to be

considered with migrated data. Migration of tables can be

done in two ways. Either all tables in relational database can

be migrated to NoSQL database or create a table in NoSQL

for each table in relational database. Either to choose a new

data model this can increase database workload significantly.

Other way is to have an external process sync data from

relational to Cassandra while running both new and old logic

in parallel. A strategy for schema mapping is also proposed to

translate data model from relational to Cassandra. J Pith [19]

has discussed a mechanism to access NoSQL databases using

proposed SQL command subset. Cassandra uses CQL

(Cassandra Query Language) which is like SQL. Complex

queries in relational databases can be performed using CQL. J

Roijackers [20] has discussed bridging of SQL and NoSQL.

NoSQL details are hidden in the work. Simba technologies’

[1] has derived Cassandra ODBC and JDBC Drivers with SQL

Connector. It offers direct, universal ODBC 3.8 and JDBC

4.0, 4.1 data access to Cassandra data stores through

Cassandra’s native API, with no extraction. Simple SQL

commands can be used instead of CQL queries.

This paper focuses on the transformation where relational
and NoSQL database have same copies of tables. The
transformation of data is in single way from relational database
to NoSQL database. This paper proposes a data adapter which
uses database converter using Apache sqoop [3]. Apache soop
tool is designed for efficiently transferring bulk data between
NoSQL database and structured datastores such as relational
databases. Many studies [21, 22] have designed hybrid
database system using sqoop as data converter. Table

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume III, Issue II
ISSN No.:2350-1146, I.F-2.71

www.asianssr.org ID: 851

synchronization is problem raised in database transformation. J
Cho [23] has discussed database synchronization which
improves freshness. Author has also discussed to refreshing a
local copy of data and maintaining consistency. Authors have
also discussed synchronization policies and study. This paper
also focuses on addition of analytical capabilities on proposed
hybrid database system. Pentaho [2] is a platform which can be
integrated to visualize and analytics. Ying-Ti Liao [24] has also
designed and discussed a data adapter for querying and
transformation between SQL and NoSQL database. Author has
provided three different modes of query approach in their
proposed design.

III. PROPOSED DESIGN

In existing system application communicates only with

relational database using SQL queries. Applications and data

growth leads to use of NoSQL databases. Big data and

complexity in transformation between databases in hybrid

database systems resulted into this data adapter system.
The data adapter consists different modules and layers. It

performs queries on database and data transformation between
databases simultaneously. Single SQL interface is provided to
communicate between both relational and NoSQL database.
The components in proposed system are: relational database,
NoSQL database, data adapter, application, and analytical tool.
Application and database coordinates with each other in the
system. Database converter performs the data transformation
and reports to data adapter system. Data adapter acts as
intermediate between the application and database. It parses
incoming query, submit query to database and fetch results
back to application. Data adapter continuously monitors the
transformation progress and takes decision about query
execution. Data adapter and database converter can perform
simultaneously. Data adapter controls the converter.
Synchronization is performed by converter to maintain the
consistency.

Fig. 1. Architecture and components of proposed design

Data adapter and database converter are two main parts.

Database converter converts data between relational database

and NoSQL database. Data adapter communicates with

applications and databases. We describe design of adapter and

its components each.

Apache Cassandra is a free and open-source distributed

database management system. It is intended to handle huge

amounts of data across many commodity servers, and provides

high availability without single point of failure. Cassandra is

hybrid between a key-value and a column-oriented database

management system. Cassandra cannot do joins or subqueries.

Cassandra ODBC and JDBC Drivers with SQL Connector:

Simba’s Cassandra ODBC and JDBC Drivers present direct,

universal ODBC 3.8 and JDBC 4.0, 4.1 data access to

Cassandra data stores via Cassandra’s native API, with no

pulling out. It enables direct query translation from SQL to the

Cassandra Query Language (CQL), providing users

unparalleled performance at scale. The integral Collaborative

Query Execution (CQE) gives down filters and aggregations

to provide improved performance access to Cassandra. It is

Powerful SQL Connector allows users to define schemas on

the fly on schema-less data.

Database adapter communicate with relational database

and NoSQL database. MySQL JDBC driver is used to connect

with MySQL. Simba’s Cassandra JDBC and ODBC driver is

used to connect with Cassandra database. SQL queries are

performed through translator, and SQL translator handles the

translation of SQL queries.

SQL Parser is responsible for accepting queries from

applications and parse, extract and pass to controller. Parsers

understand the read and write queries. It communicates with

controller to convey information regarding synchronization.

Controller is responsible for table transformation between
relational database and NoSQL database. Flow of queries and
table synchronization is also performed by controller. Table
synchronization is performed as per query approaches. Queries
related with modification, and insertion of data is added into
queue. It consists two components: submission regulator and
sync regulator. Submission regulator captures transformation
progress in local metadata repository. After each table is
transformed, Sync regulator performs synchronization process.

IV. QUERY APPROACHES FOR SYNCHRONIZATION

Relational and NoSQL database both can be accessed by

data adapter, even when data transformation is being

performed. Various query approaches are given due to data

transformation. Data and tables can be modified unexpectedly

in various stages of transformation. Data inconsistency

between both databases can occur, if query performing and

data transformation occurs on same time.
Following figure 2 shows how inconsistency may arise. We

have relational database table on left hand side and NoSQL
database on right hand side. Table is partitioned into3 parts P1,

http://www.asianssr.org/
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Single_point_of_failure

Asian Journal of Convergence in Technology Volume III, Issue II
ISSN No.:2350-1146, I.F-2.71

www.asianssr.org ID: 851

P2, P3. Database converter carry out transformation of P1, P2,
P3 respectively. At time T1, transformation of P1 is done. At
time T2, transformation of P2 is done. And finally, P3 is
transformed. In between write query arrives which affects P2
and P3. Then the data between both database tables become
inconsistent.

Fig. 2. Data inconsistency problem in data synchronization

Table synchronization is needed to affect query on both

database at same time. Three approaches are proposed for

query. Inconsistent data can be synchronized after

transformation in some approaches. Data adapter performs

patching of those queries later.

1. Transformation blocking approach:

Requests for read operations are executed immediately. All
other requests are blocked, which can affect the tables which
are being transformed. There are three stages as shown in
figure 3. In Waiting stage, tables wait in relational database,
and not transformed. Requests are executed only on relational
database. In transformation stage, table is transformed to
NoSQL database. In between all queries are blocked. Table is
completed transformation in finish stage. Blocked queries are
performed later NoSQL database. Large time is taken by
transformation in case of large data.

Fig. 3. Transformation Blocking Approach

Fig. 4. Dump Blocking Approach

2. Dump blocking approach:

Transformation is separated into dump and transform. The

time required for transformation is reduced here. Fig 4 shows

in detail. Data are dumped from relational database to dump

files in dumping stage. In transform stage, dumped data is

transformed to NoSQL database. Here, patching is performed

at beginning of finish stage. Queries are blocked only in dump

mode, but in transform stage. But still requests from

application are blocked in dump mode.

3. Direct access approach:

Query execution and database transformation are separated

here. Requests are allowed at all time at any stage. At any

stage, requests are immediately executed. Serious data

inconsistency problem can be arisen. After synchronization,

database will be eventually consistent. It uses synchronization

mechanism to deal with this data inconsistency issue. It

provides better accessibility than other approaches.

V. THEORATICAL ANALYSIS

In this section, we will discuss performance in terms of
synchronization time and synchronization overhead.
Synchronization time is initial time when same data is in
relational and NoSQL database as well. Synchronization
overhead refers the number of patches.

Synchronization time:

Consider n tables. All tables are converted one by one from
1, 2……, to n. Requests are patched later after tables
conversion. At next time, conversion of next table and queries
on previous converted table can take place simultaneously.
Patching time is less than the table conversion time. So,
patching time is overlapped with next conversions. The

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume III, Issue II
ISSN No.:2350-1146, I.F-2.71

www.asianssr.org ID: 851

synchronization time is total of conversion time of all tables
and patching time of last table.

Ttotal =

Here, tk refers kth table conversion time, refers average
patching time for single query and Pq refers queries to be
patched.

Pq = qq * fq

Here, qq refers number of all queries to be performed when
conversion of table tn.

Optimal synchronization time is to find the table with less
queries to be patched at last.

Synchronization overhead:

Count of patches is referred as overhead of synchronization.

The last table synchronization overhead time can be reduced

by identifying time duration thf that queries accessing Tn with

maximum frequency fn and avoid this table conversion during

thf. An algorithm is proposed to optimal table order to

minimize patches.

Step 1: For (p=1; p<=n; p++)

 For (q=i; q<=n; q++)

Find and store all table order combinations with starting

order by Tp

Step 2: For (p=1; p<=n; p++)

Find maximum query frequency fp of Tp in time Thf

Eliminate combination related to Tp with maximum query

frequency fp from combinations stored

Step 3: Till all combinations are not finished, Compute

count of queries to be patched

Step 4: Choose table combination to be patched with
minimum count of queries

VI. CONCLUSION AND FUTURE WORK

In this paper, a multi-module data adapter design for hybrid
database system is proposed. Without modifying existing
application design, we can have a hybrid database system.
Three approaches for data synchronization that: transformation
blocking approach, dump blocking approach and direct access
approach are also discussed. Each approach has its own
different policies for blocking queries. We also discussed
theoretical analysis of synchronization time as well as
synchronization overhead. The algorithm is also presented for
synchronization overhead minimization.

In the future, we will focus on implementation of this
proposed design and evaluate with models. We will focus more
on speeding up of operations. We will also focus on provision
of all complicated SQL queries. Enhancements in query parser,
database converter and query approaches will also be focused.
We will also offer security components for preventing data
from being hacked and compromised.

REFERENCES

[1] “Cassandra ODBC and JDBC drivers with SQL connector”, Available:
http://www.simba.com/drivers/cassandra-odbc-jdbc/

[2] “Datastax enterprise 2.0”, Available:
http://www.datastax.com/2012/03/how-to-move-data-from-
relational-databases-to-datastax-enterprise-cassandra-using-
sqoop

[3] “Apache Sqoop”, Available: http://sqoop.apache.org/

[4] OpenStack Available: https://www.openstack.org/
[5] I.A.T. Hashem, I. Yaqoob, S. Mokhtar, N.B. Anuar, A. Gani, S.U. Khan,

“The rise of ‘big data’ on cloud computing: Review and open research
issues”, Information Systems 47 (2015) 98–115.

[6] C.L. Philip Chen, C. Y. Zhang, “Data-intensive applications, challenges,
techniques and technologies: A survey on Big Data”, Inform. Sci. 275
(2014) 314–347.

[7] J. Han, E. Haihong, J. Du, G. Le, “Survey on NoSQL database”, 6th
International Conference on Pervasive Computing and Applications,
ICPCA, 2011, pp. 363–366.

[8] F. Chang, S. Ghemawat, J. Dean, W.C. Hsieh, D.A. Wallach, M.
Burrows, et al., “Bigtable: A distributed storage system for structured
data”, ACM Transaction Computational Systems 26 (2008).

[9] “Apache HBase”, Available: http://hbase.apache.org/

[10] M. Vora, “Hadoop-HBase for large-scale data”, International
Conference on Computer Science and Network Technology”, 2011, pp.
601–605.

[11] Kristina Chodorow, “MongoDB: The Definitive Guide”, O’Reilly
Media, Inc., 2013.

[12] Avinash Lakshman, Prashant Malik, “Cassandra: a decentralized
structured storage system”, ACM SIGOPS Operations System Rev. 44
(2010) 35–40.

[13] Neal Leavitt, “Will NoSQL databases live up to their promise?”
Computer archival 43, Issue 2(February 2010) pp. 12–14.

[14] James Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh
A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity”, 2011. Mckinseyglobal institute.

[15] Apache Cassandra. Available http://cassandra.apache.org/

[16] Rick Cattell, “Scalable SQL and NoSQL data stores”, ACM SIGMOD
Rec. 39 (2011), pp 12–27.

[17] M. Fazio, A. Celesti, M. Villari, A. Puliafito, “The need of a hybrid
storage approach for IoT in PaaS cloud federation”, 28th International
Conference on Advanced Information Networking and Applications
Workshops, WAINA, 2014, pp. 779–784.

[18] K.A. Doshi, T. Zhong, Z. Lu, X. Tang, T. Lou, G. Deng, “Blending SQL
and NewSQL approaches: Reference architectures for enterprise big data
challenges”, 2013 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, CyberC, 2013, pp.
163–170.

[19] J. Rith, P.S. Lehmayr, K. Meyer-Wegener, “Speaking in tongues: SQL
access to NoSQL systems”, In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC’14, 2014, pp. 855–857.

[20] J. Roijackers, “Bridging SQL and NoSQL (Master’s thesis)”, Eindhoven
University of Technology, 2012.

[21] O.V. Joldzic, D.R. Vukovic, “The impact of cluster characteristics on
HiveQL query optimization”, 21st Telecommunications Forum,
TELFOR, 2013, pp. 837–840.

[22] T. Kim, H. Chung, W. Choi, J. Choi, J. Kim, “Cost-based join
processing scheme in a hybrid RDB and hive system”.

[23] J. Cho, H. Garcia-Molina, “Synchronizing a database to improve
freshness”, ACM SIGMOD, 2000, pp. 117–128.

[24] Y Lio, J. Zhou, C. Lu, S. Chen, C. Hsu, W. Chen, M. Jiang, Y. Chung,
“Data adapter for querying and transformation between SQL and
NoSQL database”, Elsevier, Future Generation Com. Sys., 65, 2016, pp.
111-121.

http://www.asianssr.org/
http://www.simba.com/drivers/cassandra-odbc-jdbc/
http://www.datastax.com/2012/03/how-to-move-data-from-relational-databases-to-datastax-enterprise-cassandra-using-sqoop
http://www.datastax.com/2012/03/how-to-move-data-from-relational-databases-to-datastax-enterprise-cassandra-using-sqoop
http://www.datastax.com/2012/03/how-to-move-data-from-relational-databases-to-datastax-enterprise-cassandra-using-sqoop
http://sqoop.apache.org/
https://www.openstack.org/
http://hbase.apache.org/
http://cassandra.apache.org/

