Sentiment Analysis of Social Messages Using Supervised Learning Approach

Ms. Shital S. Patil
M.E. (2nd year) Computer Science and Engg.
G.H. Raisoni Institute of Engg. and Mgmt., Jalgaon.

Mrs. Swati A. Patil
Department of Computer Science and Engg.
G.H. Raisoni Institute of Engg. and Mgmt., Jalgaon.

Abstract: Recently new forms of communication, such as microblogging and text messaging have emerged and finds everywhere. While there is no limit to the range of information conveyed by tweets and texts, often these short messages are used to share opinions, thoughts and sentiments that people have about what is going on in the world around them. The project proposes this task and the development and analysis of a twitter sentiment corpus to promote research that will lead to a better understanding of how sentiment is conveyed in tweets and texts. For this development Twitter API is used to collect corpus of text posts and forming a data set for the module. There will be two sub-tasks: an expression-level task and a message-level task; participants may choose to participate in either or both tasks.

Index Terms — NLP (Natural Language Processing), POS (Part Of Speech), TF-IDF (Term Frequency Inverse document Frequency) and Twitter API.

I. INTRODUCTION

Consumers to express their opinions about the news article, that was almost impossible in the traditional printed-media. New online news outlets have also been created with many of the mellowing user commenting. Blogs and product/movie reviews have brought about a bulk of user generated content, and with it, the need by news outlets, analysts and researchers to know how news consumers have reacted. Among others, there is interest in whether news consumers reacted in a negative or a positive way. Twitter has become a melting pot for all-ordinary individuals, celebrities, politicians, companies, activists, etc. Almost all the major news outlets have Twitter account where they post news headlines for their followers. Out of all the popular social media’s like Face-book, Google+, My space and Twitter, people prefer Twitter because tweets are small in length (maximum 140 characters), thus less ambiguous, unbiased, easily accessible via API and from various socio-cultural domains[1].

Sentiment Analysis is a Natural Language Processing and information extraction task that aims to obtain writer feelings expressed in positive or negative comments, questions and requests, by analyzing large number of documents. The Web is a huge repository of structured and unstructured data. Analysis of the data to extract public opinion, thought and sentiment is a challenging task. Sentiment analysis uses Naïve Bayes classifier, TF-IDF and NLP with word based approach to classify the results [5].

In practical terms, the classification task requires a pre-classified database sample, called training set, which is either used to generate a classifier (classification model) or to compare with new unlabelled data to be classified. This is important because the classifier accuracy is highly dependent upon such training data. When the application involves social media data, however, this pre-classification is made mostly manually, making the process very time-consuming, subjective and reducing its real-time big data applicability.

The paper is organized as follows. Section II provides related work of the system. Section III describes the proposed model for sentiment analysis. Section IV presents the evaluation method And the paper concluded in section V.

II. LITERATURE SURVEY

In recent years, sentiment analysis has become a hot topic in the NLP research community. There have been many papers written on sentiment analysis for the domain of blogs and product reviews. Researchers have also worked on detecting sentiment in text.(Turney 2002) presents a simple algorithm, called semantic orientation, for detecting sentiment [2]. (Pang and Lee 2008) gives a survey of sentiment analysis. Researchers have also analyzed the brand impact of micro blogging (Jansen) [4].

A. Sentiment analysis and opinion mining:

This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems [3]. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional
fact-based analysis. Support vector machine, naïve Bayes and n-gram representation approach was used for detecting the sentiment from given documents. Automatic sentiment analysis technique uses hybrid approach (emoticon and word based) for detecting the positive and negative sentiments [5]. Basically there are five types of sentiments analysis viz. sentence level, document level, aspect level, comparative level and sentiment lexicon acquisition [6].

B. Construction of a sentimental word dictionary:
A critical step of most approaches to sentiment analysis is using a sentiment dictionary to identify the sentiment units in a document. For best performance, the dictionary should have high coverage of words/phrases/concepts (referred to as elements) and their sentiment information (e.g., sentiment polarity and value). The concept of deducing the polarities of words is based on the polarities of other words. There are quite a few operators such as hyponym, antonym and similar to in WordNet, which can be used for deduction, as pointed out [7]. The sentiment lexicon is the most crucial resource for most sentiment analysis algorithms. Here, in manual approaches, people code the lexicon by hand; in dictionary-based approaches, a set of seed words is expanded by utilizing resources like two step Concept Net [8]. Two Step Concept Net Method consider first iterative regression which gives a sentiment value. Then, these values are used as starting values for random walk method with in-link normalization. As per survey of sentiment analysis for Twitter messages, following problems arise:

1. Although there are some approaches that use classification methods to identify sarcasm, noisy texts are still a big challenge to most sentiment analysis systems.
2. Many of the statements about entities are factual (objective) in nature and they still carry sentiment.
3. Manual approach and concept net method are used for constructing a sentiment dictionary to identify the sentiment units in a document.
4. It is difficult to identify the sentences that contain comparative opinions, and to extract the preferred entities in each opinion.

III. PROPOSED SYSTEM
This proposed system consists of four Phases viz. text mining, sentiment analysis, and classification and level classification. Figure 1 shows the proposed system architecture.

1. Text Mining:
Text mining phase is generally divided into four levels: text collection, document pre-processing, document analysis and validation. The preprocessing step starts the text preparation into a more structured representation. This step can be divided into five sub steps: 1) tokenization; 2) stopwords removal; 3) stemming; 4) document representation; and 5) feature selection. The end result is a data matrix in which each row represents a text (or document) and each column a term (word) or token. The Analysis step is usually considered the core of text mining, because this is when some type of useful, nontrivial knowledge is extracted from the text [9]. The analysis can be classified into two categories: descriptive and predictive.

2. Sentiment Analysis
This is the simplest form of sentiment analysis and it is assumed that two types of analysis.
A. Document level analysis- Document contains an opinion on one main object expressed by the author of the document. Given the training data, the system learns a classification model by using one of the common classification algorithms such as Naive Bayes[11]. This classification is then used to tag new documents into their various sentiment classes. When a numerical value (in some amount of finite range) is to be assigned to the document then, regression can be used to show the value to be assigned to the document.

B. Sentence Level analysis - This is the simple form of sentiment analysis and it is assumed that the document contains an opinion on one main object shows by the author of the document. Numerous papers have been written on this topic. In the supervised learning approach assumes that there are a finite set of classes into which the document should be classified and training dataset is available for each class. The simplest case is when these are two classes: positive and negative. One more extensions which also add a neutral class or have some separate numeric scale into which the document should be placed (like the five-star system used by Amazon).

More advanced representations utilize TFIDF, POS (Part of Speech) information.

As seen in the previous discussion, the sentiment lexicon is the most crucial resource for most sentiment analysis algorithms. Here, I brief mention a few number of approaches for the acquisition of the lexicon. There are three options for acquiring the sentiment lexicon: manual approaches in which people add the lexicon by hand and dictionary-based approaches in which a set of seed words is expanded by utilizing resources like two step ConceptNet. Clearly, the manual approach in which generally not feasible as each domain requires its own lexicon and such a laborious effort is prohibitive. Two Step Proposed ConceptNet Method Our proposed solution is a two-step method. First, use iterative regression to give each concept on ConceptNet a sentiment value. Then, the values are used as starting values for our random walk method with in-link normalization.

3. Classification

This classification is done using Naive Bayes classifier algorithm [12]. This propose system assume supervised learning approach. The supervised approach assumes that there are a finite set of classes into which the document should be classified and training data is available for each class such as positive, negative and neutral. This proposed system consists of three modules using these modules. It can classify the system. Modules are support Counting Module (SCM), Database Selection Module (DSM) and Classification Module.

4. Three- Level Classification

We classify our sentiments in 3 categories classification. Level classification checks the frequency of each emotion of sentiment words. For example check the sentiments for low level, mediator level and high level. Like ok, good etc words comes in low level class, best etc words comes in mediator class, excellent, awesome etc comes in high level class. Sentiment classification is summarized in table format as shown in table I.

<table>
<thead>
<tr>
<th>Sentiment Levels</th>
<th>Low emotion 1</th>
<th>Mediator emotion 2</th>
<th>High Emotion 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>OK, good etc</td>
<td>Better, best etc.</td>
<td>Excellent, awesome etc.</td>
</tr>
<tr>
<td>Negative</td>
<td>Bad, poor etc.</td>
<td>Worst</td>
<td>Worst sadness</td>
</tr>
</tbody>
</table>

IV. EVALUATION METHODS

This section starts with brief overview of Naive Baye’s Classifier algorithm and TF-IDF. Afterwards, it presents the materials and methods used for assessing the performance of the proposed system.

A. Naive-Baye’s Classification Algorithm

The Bayesian Classification represents supervised learning method as well as a statistical method for classification [12]. Naive Bayes classifiers are among the most successful known algorithms for learning to classify text documents. The algorithm used for this system is naïve Bayes, supervised learning algorithm. The proposed system has the algorithm as follow.

Input : { dataset from tweeter }

Step 1: Preprocessing, analysis and validation on dataset is done using text mining algorithm.

Step 2: Get words from documents and classify the text as subjective or objective. And then construct sentiment dictionary use the scaling method for using two step propagation methods.

Step 3: classify the result with Naive bayes classifier algorithm and generate train set and label the tuples from train set. Then use TF-IDF and POS techniques for analysis the set.

Step 4: use selections modules and generate test set for comparisons and for labeling unknown tuples go to step 2.
Step 5: classify result on three categories based on degree of
tuples such as positive -p1, p2, p3 and negative n1, n2, n3
and neutral level.

Step 6: return the result and verify it using f1-score and
accuracy factor.

B. Term Frequency–Inverse Document Frequency (TF-IDF):
It is the numerical statistic often use as a weighting factor in
information retrieval and text mining. The TF-IDF value
increases proportionally to the number of times single word
appears in the document, but there is the offset by which the
frequency of the word in the corpus, which helps to control for
the fact that some words are generally more common than
others.

C. Part-of-speech features
For each tweet, we have features for counts the number of
verbs, adverbs, adjectives, nouns, and any other parts of
speech (POS).

<table>
<thead>
<tr>
<th>Actual positive instances</th>
<th>Predicted positives</th>
<th>Predicted negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive Instances(TP)</td>
<td>False negative instances(FN)</td>
<td></td>
</tr>
<tr>
<td>Actual negative instances</td>
<td>False positive instances(FP)</td>
<td>True negative instances(TN)</td>
</tr>
</tbody>
</table>

D. Sentiment Classification performance metrics
Generally, the performance of sentiment classification is
evaluated by using four indexes: Accuracy with Precision plus
Recall and F1-score. This is the normal option to compute
these indexes which are depend on the confusion matrix
shown in Table II.

The Venn diagram shown in figure 2 consists of set of
documents ‘target’(tp+fn) And the ‘selected’(fp+tp) in the
diagram .tp stands for true positives fp stands for false
negatives and fn stands for false negatives. Those that are
neither in the ‘selected’ nor in the targeted are true negatives
(tn).

Figure 2 Diagram for Evaluation Definition

From here, accuracy, precision, recall and F measure are
computed as follows [5].

\[
\text{Precision} = \frac{tp}{tp + fp} \quad (1)
\]

\[
\text{Recall} = \frac{tp}{tp + fn} \quad (2)
\]

\[
\text{Accuracy} = \frac{tp + tn}{tp + fp + fn + tn} \quad (3)
\]

\[
\text{F-measures} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (4)
\]

Precision (Pr): corresponds to the proportion of the predicted
positive cases that were correctly classified. **Recall (Re):** Is the
proportion of positive cases that were correctly identified.. **F-
measures:** Is harmonic mean between precision and recall.

Accuracy of classifier (Acc): To measure overall classifier
performance the Accuracy of classifier was calculated. As
shown in table accuracy represent the success rate of
classification algorithm and correct classification divided by
the number of document [5].

False positive rate (FPR): Corresponds to incorrect classification made by algorithm.

V. CONCLUSION
This paper proposed a sentiment analysis system with training
based on tweets containing either emoticons or sentiment
based words. These set categorized the tweets that classified
depending on degree of the sentences as positive -1, 2, 3
,negative- 1, 2, 3 and neutral level. For implementing this
technique we use naïve Bayes algorithm to classify the
unlabelled tweets. It provides a detailed view of the different
applications and potential challenges of sentiment analysis.
VI. REFERENCES

[5] “Automatic sentiment Analysis of Twitter Message” By Ana C.E.S.Lima and Leandra N.Castro @ 2012 IEEE.
[6] Techniques and Applications for Sentiment Analysis by Ronen Feldman @ 2013 ACM.