

Surface Treatment of M2 tool steel: A Review

Dinesh Kumar

Research Scholar

Department of Mechanical Engineering
IKG PTU, Jalandhar, Punjab, India
dinesh123badhan@gmail.com

Hoshiar Singh Payal

Department of Mechanical Engineering
SSIET, Jalandhar, Punjab, India
payal_hs@yahoo.com

Naveen Beri

Department of Mechanical Engineering
BCET, Gurdaspur, Punjab, India
nav_beri74@yahoo.co.in

Abstract—These M2 tool steel is a widely used material to manufactured cutting tools that have molybdenum additions as one of their primary alloying elements. This paper provides a comprehensive literature review to enhance the fundamental understanding of the cutting tools and workpiece materials with different treatments that recent technological development depends on advances in the field of surface treatments. Engineers and scientist may design most indestructible and highly sensitive cutting tools in manufacturing, however without appropriate surface finished materials to fulfill the design requirements, the final product may not be realistic. Cost is the key factor for their wider application in modern industry. Cost reduction can be achieved by simpler cutting tool fabrication methods and higher surface finished production volume. M2 tool steel is representative of a class of materials which are used under conditions characterized by a rapid application of loads and high temperatures, such as twist drills, broaches, taps, milling cutters, reamers, saws, knives and bearings. Hence, the tribological evaluation of various surface treatments for M2 tool steel is the major goal of this study.

Keywords— *M2 Tool Steel, Surface treatment, Molybdenum, fabrication.*

I. INTRODUCTION (HEADING 1)

The American Society for Testing and Materials established a classification system for the high-speed tool steels many years ago. That system consists of a T for those steels that have tungsten as one of their primary alloying elements. The M series steels generally have higher abrasion resistance and less distortion in heat treatment; also, they are less expensive. Molybdenum steels are assigned as Group M steels as per the AISI arrangement framework. More than 95% of rapid steels that are made in the US are gathering M steels. Molybdenum high speed steels have comparative execution when contrasted with tungsten rapid steels. Be that as it may, the underlying expense of molybdenum instrument steels is lower. Titanium nitride, titanium carbide and a few different coatings can be utilized as a part of the devices made of this

sort of steels through physical vapor testimony procedure to enhance the execution and life expectancy of the device. This article will give an outline of M2 molybdenum fast apparatus steel, which has high carbon substance and preferred wear resistance over M1 molybdenum rapid instrument steel. Most coatings for the most part increment an instrument's hardness as well as lubricity. A covering permits the bleeding edge of an instrument to neatly go through the material without having the material rattle to it. The covering additionally diminishes the temperature connected with the cutting procedure and increment the life of the apparatus. Lasers and electron bars can be utilized as wellsprings of exceptional warmth at the surface for warmth treatment, remelting (coating), and compositional adjustment. The compound arrangement of a section or instrument can likewise be changed to frame high speed steel on the surface of an incline amalgam or to shape a combination or carbide advanced layer on the surface of a rapid steel part. A few techniques can be utilized, for example, foils, pack boronising, plasma shower powders, powder cored strips, idle gas blow feeders, and so forth. The primary utilization of high speed steels keeps on being in the fabricate of different cutting apparatuses: drills, taps, processing cutters, instrument bits, adapt cutters, saw edges, planer and jointer sharp edges, switch bits, and so on., in spite of the fact that use for punches and kicks the bucket is expanding. High speed steels likewise found a market in fine hand instruments where their generally great sturdiness at high hardness, combined with high scraped spot resistance, made them appropriate for low speed applications requiring a strong (sharp) edge, for example, hand plane cutting edges, and top notch kitchen, folding knives, and swords. High speed steel instruments are the most mainstream for use in woodturning, as the speed of development of the work past the edge is generally high for handheld apparatuses, and HSS holds its edge far longer than high carbon steel devices can.

A machining strategy commonly utilized for hard metals, Electrical Discharge Machining makes it conceivable to work

with metals for which conventional machining strategies are inadequate. An essential indicate recollect with EDM Machining is that it will just work with materials that are electrically conductive. With great EDM Machining gear it is conceivable to cut little odd-molded edges, definite forms or pits in solidified steel and additionally intriguing metals like titanium, hastelloy, kovar, inconel, and carbide. The EDM Process is regularly utilized as a part of the Tool and Die industry for form making, however as of late EDM has turned into a basic part to make model and generation parts. This is found in the aviation and gadgets ventures where generation amounts stay low. Cost reduction can be achieved by simpler cutting tool fabrication methods and higher surface finished production volume which can be suitable by Electric discharge machining (EDM).

II. LITERATURE REVIEW

Rocha et al. [1] experimental study carried out for the effect of plasma-nitriding parameters on the structure of the compound layer was generated in the surface of M2 tool steel for varying temperatures range and diffusion zone with a systematic change in process parameters, temperature from 350°C to 500°C and process gas atmosphere depending on the amount of nitrogen was maintained. Metallographic characteristic inspection with X-ray diffraction and glow discharge optical spectroscopy analysis for chemical composition gradients, high tensile residual stresses were found, probably existing in the nitride phase for the investigated plasma-nitride steel samples. Dydra and Sayer et al. [2] developed a robust scratch tester for industrial application to evaluate PVD Titanium Nitride coatings on M2 tool steel by plots of the effective coefficient of friction for indenter movement. A clear transition between different slopes in such a graph is correlated with the critical load for coating failure as identified by microscopic observations. The variation in m_{eff} as a function of vertical load is explained initially by the work hardening of the surface region due to contact with the indenter. As the applied load is further increased, the ploughing force within the coating and the shearing force due to adhesion between the coating and the substrate begin to dominate the behavior of effective mass. Results for coatings on different substrates are presented to demonstrate the versatility of the unit for industrial testing. Akbari et al. [3] studied the nitriding behavior of AISI M2 steel samples earlier given two different heat treatments in order to investigate the effects of the microstructure on the thickness and hardness of nitride layer. Before nitriding, a group of samples was fully annealed while the second group was quenched and tempered, thus retaining the lowest and highest hardness respectively. Plasma nitriding was performed at 450°C for 8 h with a mixture of N₂ and H₂ in a plasma reactor working under floating potential. Structural and mechanical properties of nitride layers were characterized using X-ray diffraction, optical microscopy and micro-hardness testing. For the hardened-tempered samples, the nitrided region mainly consisted of a diffusion zone. Alves et

al. [4] studied the corrosion behavior of M2 high speed steel heat-treated under different conditions in Potassium Chloride aqueous solution by corrosion potential measurements, Tafel curve and electrochemical impedance. Heat treatment leads to an increase of the corrosion resistance of high speed steel; the higher the tempering temperature after quenching, the higher the corrosion resistance of the steel. X-ray diffraction, energy dispersive X-ray analysis and scanning electron microscopy were also used to further understand the corrosion behavior of the different samples. Based on these analyses, the microstructure of the different samples was correlated with their corrosion properties.

Arias et al. [5] connected a laser-surface liquefying treatment to AISI M2 high speed steel – solidified and tempered – and concentrated on the subsequent surface attributes (microstructure) and mechanical conduct (hardness and wear execution). The steel was dealt with utilizing a Nd:YAG persistent wave laser with various operation conditions. The impact of the laser preparing parameters on the individual dots and on the qualities of the liquid surface layer acquired utilizing the multipass framework with half cover was concentrated on. The microstructure portrayal for all conditions is framed of MC-and M2C-sort carbides, martensite, and held austenite; the amounts of this stage rely on upon the working conditions. It has been resolved that low levels of force thickness and high filtering velocities of the shaft prompt more noteworthy homogeneity in the microstructure with high hardness values and wear resistance.

Avaler-Batista et al. [6] performed experiment for characterization of electron bar vanishing plasma-helped physical vapor statement Cr-N coatings saved on AISI M2 steel and hardmetal (K10) substrates in two distinct conditions: Pristine (i.e., covered) and Recoated (i.e., stripped and recoated). XRD examinations showed that both Pristine and Recoated coatings comprised of a blend of hexagonal Cr₂N and cubic CrN, paying little heed to substrate sort. For the M2 steel substrate, just little contrasts were found as far as covering stages, microstructure, grip, grating and wear coefficients amongst Pristine and Recoated. Recoated on WC-Co (K10) displayed a less thick microstructure and huge sub-par grip contrasted with Pristine on WC-Co (K10). The wear coefficient of Recoated on WC-Co was 100 times higher than those displayed by every single other example. The outcomes acquired affirm that the stripping procedure did not antagonistically influence the Cr-N properties when this covering was kept onto M2 steel substrates; however it is clear from the unacceptable tribological execution of Recoated on WC-Co that the stripping procedure is unsatisfactory for hard metal substrates. Avaler-Batista et al. [7] Plasma nitriding of various substrates, for example, Ti6Al4V and AISI M2 steel was accomplished by method for D.C. sparkle releases helped by thermionic emanation (triode arrangement). The higher ionization levels accomplished utilizing a D.C. triode arrangement decreased the treatment time and nitriding temperature required to acquire hard and sensibly profound nitrided cases in the Ti6Al4V compound. Up to this nitriding

temperature, solidifying appeared to be for the most part finished by consolidation of nitrogen in the a-Ti stage, as the arrangement of a titanium nitride layer at first glance couldn't be identified by SEM. For the most noteworthy nitrogen focus and least inclination voltage, no compound layer was shaped. The triode plasma nitriding process permitted a noteworthy diminishment in handling time for both M2 steel and Ti6Al4V amalgam in contrast with traditional D.C. diode plasma nitriding.

Barshilia [8] set up nanocomposite coatings of Cr_{0.5}Si₃N₄ displaying low contact and high strength on plasma nitrided AISI M2 steel substrates utilizing a lopsided magnetron sputtering framework. The surface morphology and cross-sectional microstructure of the Cr_{0.5}Si₃N₄ nanocomposite coatings were concentrated on utilizing field outflow examining electron microscopy (FESEM) methods. Cr_{0.5}Si₃N₄ nanocomposite coatings arranged at 48 at.% Cr showed a thick microstructure with nanoindentation hardness and durability estimations of 18 GPa and 2.0 MPa^{1/2}, separately. Nanoscratch estimations showed that Cr_{0.5}Si₃N₄ nanocomposite coatings displayed great attachment with a most extreme basic heap of 150 mN. Ballon-circle responding tests at a heap of 2 N demonstrated that Cr_{0.5}Si₃N₄ nanocomposite coatings arranged at 48 atm% Cr displayed a normal rubbing coefficient of 0.30. FESEM investigations of the wear tracks showed that there was no critical wear misfortune and the Cr_{0.5}Si₃N₄ nanocomposite coatings displayed just mellow wear because of oxidation. Bressan et al. [9] investigated the wear resistance of tool steels and 52100 steel coated with Al₂O₃ by MOCVD process. The wear tests by sliding and abrasion were performed in a pin-on-disk and ball-on-disk apparatus whose pin and ball substrates were steels fabricated from AISI M2, D6 and 52100. The MOCVD coating processes were carried out in a research laboratory apparatus at 200 °C under N₂ +O₂ atmosphere. The counterpart disks were ABNT 1008 steel sheet used in the brazilian fridge industry. The wear resistances of the coated tool steels were evaluated through the pin-on-disk test, using a sliding velocity 0.6 m/s, normal loads of 20 and 30 N, total sliding distance of 2400m and controlled conditions of temperature and humidity. The pin and ball material substrate were quenched and tempered, and the disks were tested as received. From the plotted graphs of lost volume versus sliding distance, it was observed that occurred a greater wear rate of AISI D6 pins without coating, this is possibly due to more severe adhesion and delaminating mechanisms. The AISI M2 and D6 pin coated with Al₂O₃ showed similar wear resistance and higher resistance than the uncoated D6 pin. However, the tested sphere of AISI 52100 showed different behavior under 20N normal load. For both sphere coated with Al₂O₃ and uncoated the wear rate were similar. From microscopy observations, in order to have accurate measures of ball wear rate, it is proposed a new method to measure wear resistance of ball and pin in the pin-on-disk tests: wear can be measured by the wear track width or area left on the ball tip. The graphs of track width versus sliding distance are shown and the curves for tested material and coating are compared.

Pin and ball lower lost volume rate and wear track width with sliding distance is related to greater surface hardness after heat treatment and the coating process. Nitride M2 and D6 tool steels coated with Al₂O₃ showed superior wear resistance characteristics for cold working tooling. The spheres of AISI 52100 coated with Al₂O₃ presented poor wear resistance due to surface defects.

Chaus and Domankova [10] did research for both the cast and the warmth treated states, the precipitation of the optional carbides in rapid steel of AISI M2 sort adjusted with titanium diboride. The essential center was on the impact of austenitizing temperatures on the auxiliary carbide precipitation amid treating. A few contrasts in starting point of the auxiliary carbides, and in addition fit as a fiddle and size dissemination, were found in the tempered microstructure for the distinctive austenitizing temperatures. After austenitization at 1180 °C and triple hardening at 560 °C, the auxiliary carbide particles of a round get down to business to 200 nm in size were recognized by chose region electron diffraction as M₂₃C₆. After austenitization at 1220 °C, two sorts of the auxiliary carbides were found in the tempered microstructure, M₂₃C₆ with a size up to 200 nm and M₆C with a size up to 400 nm. In both the cases, the carbide particles were somewhat rakish. After austenitization at 1260 °C, just M₆C auxiliary carbides were uncovered in the tempered microstructure, which happened as the rakish particles up to 350 nm in size. What's more, impressively better M₂₃C₆ carbide particles with a size of 10- 40 nm were found to hasten in the tempered microstructure. Cherendra et al. [11] Changes in the stage and component organization, tribological properties of the Zr/AISI M2 steel framework after treatment with pressure plasma streams. It was found that the treatment brought about the development of a blended layer containing molecules of a covering (Zr), a substrate (M2 steel) and a plasma-shaping gas (N). The zirconium fixation in the blended layer relies on upon treatment parameters. The ZrN development in the surface layer gives microhardness increment, grinding coefficient diminish and improved warm solidness of tribological properties.

Hilton et al. [12] deposited TiN films onto M2 steel utilizing plasma-helped concoction vapor affidavit. TiCl, N, and H, were the reactant gasses utilized at 1 Torr. A plasma was vital for TiN arrangement at 500 °C and beneath. At 500 °C, an exceedingly crystalline stoichiometric TiN covering was shaped with a (200) surface introduction and having a columnar zone 2 grain structure. At 400 °C, a zone T structure with an extra nebulous part was watched. Both sorts of movies had great adherence with scratch grip basic burdens tantamount with qualities for sputtered TiN. The zone 2 movies fizzled by breaking and intermittent chipping inside the covering. The zone movies fizzled by breaking in the covering and by chipping, inside the covering and by the interface. Wood screw electron spectroscopy profundity profiling of thin movies demonstrates that the interface was sharp and no gathering of chlorine is watched. Wood screw electron spectroscopy and examining electron microscopy recommend that unmistakable TiN islands or cores were

available in the early phases of development. The utilization of an organometallic source, titanium tetrakis-(dimethylamide), brought about the development of carbonitride powders.

Das et al. [13] proposed regular refinement of carbide particles by cryotreatment as a central point for the change of wear resistance in apparatus steels. Nonetheless, this suggestion is not substantiated by test confirm. This has been analyzed in this report by (i) point by point miniaturized scale auxiliary investigations of the nature, volume division, estimate, populace thickness and dissemination of carbide particles, (ii) XRD and EDX smaller scale examination on the mass examples and electrochemically removed carbides, and (iii) estimation of hardness and wear rate of a progression of diversely cryotreated AISI D2 steel. The outcomes definitively set up that (i) cryotreatment, in contrast with traditional treatment, initiates precipitation of better carbides with higher volume portion and more uniform dispersion, and (ii) populace thickness and the span of auxiliary carbide particles altogether increments with holding time up to a basic term at 77K in cryotreatment. The last perception shows the spearheading course towards improvement of cryotreatment outline for techno-monetary advantage.

Dong et al. [14] investigated the effect of sliding duration on the tribological behaviors of spot patterned coatings. Two patterns based on physical vapor deposition (PVD) TiN coatings were used. in-lined (IN) and staggered (ST) spots. The tribological behaviors were evaluated by using a Cameron-Plint wear test rig. The M2 steel discs deposited TiN coatings with IN and ST patterns slid against the ASSAB 17 tool steel pins at a speed of 0.23 ids. The testing results on disc specimens with two types of PVD TiN spot patterns. The results revealed that the in-lined coatings possessed relatively better wear behaviors than the staggered pattern coating. Mechanisms for such superiority and for the cause of peeling were discussed. A relevant design approach was suggested for the application of such patterned coatings. Gill et al. [15] studied the metallurgical and mechanical characterization of cryogenically treated AISI M2 high speed steel (HSS) in terms of carbide precipitation and wear behavior. The samples of commercially available conventionally quenched and tempered AISI M2 HSS were procured and subjected to cryogenic treatment at two levels 2110 °C (shallow treatment) and 2196 °C (deep treatment) of temperature. The microstructures obtained after cryogenic treatments have been characterized with a prominence to comprehend the influence of cryogenic treatment vis-a`-vis conventional quenching and tempering on the nature, size, and distribution of carbides. The mechanical properties such as hardness and wear rate of the specimens have also been compared by performing Rockwell C hardness test and pin-on-disc wear test, respectively. Microstructures, hardness, wear rate and analysis of worn surface reveal the underlying metallurgical mechanism responsible for the improving mechanical properties of the AISI M2 HSS. Gnyusov et al. [16] investigated structural features of coatings obtained by

multiple-pass electron beam cladding of M2 steel powder on steel substrates. It is established that a multi-modal size distribution ($d_1 = 3.8\text{ }\mu\text{m}$, $d_2 = 0.65\text{ }\mu\text{m}$, $d_3 < 0.25\text{ }\mu\text{m}$) of reinforcement particles was generated in the carbide subsystem of the clad layer. The volume content of secondary carbides M6C and residual austenite of matrix can be changed in the wide range depending on the thermal cycling induced by incident electron beam. The higher is the content of the retained austenite in the coating, the higher is the wear resistance of the coating due to transformation in cooling and precipitation of secondary carbides in the matrix grains. Gogte et al. [17] established the improvement in the life of tool and alloy steels, when treated at 88K for 24 hours. It is however not clear as to what factors of the Deep Subzero process (DSZ) actually contribute towards improved performance of tools. It is also not clear, whether treatment for 24 hours is applicable to all steels or not. In the present investigation, an attempt to study the evolution of microstructure in AISI T42 high speed steel during DSZ treatment is performed. The results indicate clear evidence of changes beginning within the first 8 hours of DSZ. Changes in the morphology of carbides with the phenomenon of dissolution, precipitation, and merging are observed. Scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS) were used during the investigation. Gu et al. [18] investigated the microstructure investigation and flow behavior during thixoforging of M2 steel parts were investigated. Partial re-melting was performed at processing temperatures ranging from 1290°C to 1340°C corresponding to a liquid fraction range between 10% and 30% (according to differential scanning calorimetry measurements and quantitative image analyses). A conventional microstructure for thixo-forming process was obtained: spherical solid grains surrounded by liquid phase. The microstructure across the heated billets was relatively homogeneous with bigger grain size near the surface. Successful thixoforging for producing parts was finally achieved at processing temperatures. By investigating the microstructure and load-displacement curves, different mechanisms in various forming stages were proposed.

Hua et al. [19] performed a series of lubricated pin-on-disk wear experiments to investigate the tribological behaviors of in-line (IN) and staggered (ST) patterned PVD TiN coatings as well as a fully TiN-coated (FC) coating on M2 steel against ASSAB 17 tool steel mating pins. The influence of applied load on the tribological behavior of the individual types of coating was also investigated. The experimental results showed that the tribological behavior of the two patterns and the FC M2 steel sliding against tool steel was a function of applied load. The wear resistance for any PVD TiN coating pattern was relatively higher at the specific individual loadings of 394, 800, 900 and 1100 N for 4 h under wet lubrication. Wear loss of the two types of patterned discs and pins was lower than that of the full coating counterpart. Wear mechanisms are suggested. Hua et al. [20] performed experiments to investigate systematically the influence of sliding speeds on tribological behaviours of in-lined (IN), staggered (ST) spot-islandic and fully coated (FC) physical

vapour deposition (PVD) TiN coatings on M2 steel discs sliding with ASSAB 17 tool steel pins. Results revealed that: (i) the friction coefficients of the individual mating couples generally decreased with the sliding speed and the order in increasing magnitude at each specific sliding speed was FC, IN, and ST pair, respectively and (ii) the wear loss was inversely related to the sliding speed, and the wear loss of both the pin and disc of FC mating pair was the largest with ST the second and IN the third. Relevant mechanisms for the friction and the wear loss are proposed and discussed in this paper.

Hua et al. [21] performed experiments to investigate systematically the tribological behaviors of in-lined and staggered spot-island PVD TiN patterns on M2 steel discs sliding with ASSAB 17 tool steel pins. Testing results on disc specimens with full PVD TiN coating and with the two types of PVD TiN spot-island patterns coated under three bias voltages were presented. Results revealed that both in-lined and staggered patterned coatings possessed relatively better wear behaviors (with in-lined patterned coating being the most superior) than the fully coated discs. Mechanisms for such superiority were discussed in this paper.

Jackson et al. [22] used computational techniques to develop axi-symmetric, straight, sonic-line, minimum length micro nozzles that are suitable for laser micro-machining applications. Gas jets are used during laser micro-machining processing applications to shield the interaction zone between laser and workpiece material, and they determine the machining efficiency of such applications. The paper discusses the nature of laser–material interactions and the importance of using computational fluid dynamics to model pressure distributions in short nozzles that are used to deliver gas to the laser–material interaction zone. Experimental results are presented that highlight unique problems associated with laser micro machining using gas jets. Jahrling et al. [23] discussed the hardness, wear behaviour and microstructure of AISI M2 high speed steel implanted with carbon ions. The samples were implanted at energy of 100 keV. The doses ranged from 1×10^{17} C+/cm² to 3×10^{18} C+/cm². Hardness increases due to ion implantation, but no significant dose dependence is found. For lower doses the wear affects mainly the pin, but from doses of 5×10^{17} C+/cm² onwards a pronounced ploughing of the disk is observed. The abrasive wear rate decreases with increasing dose. Microstructural investigations reveal the presence of e-carbide and graphitic carbon in the implanted volume. A possible correlation between hardness and wear is discussed based on the microstructural results. Jouanny-Tresy et al. [24] investigated that C.Y.D. coating of the reinforcing ceramic particles used in particulate metal matrix composites allows the control of reactivity at the particle/matrix interface. Wear resistant high speed steel-based composites containing uncoated Al₂O₃, uncoated TiC and C.Y.D. coated Al₂O₃ were liquid phase sintered, then characterized using "pin-on-disc" wear testing. TiC or TiN C.V.D. coatings of Al₂O₃ were tested to determine the increase in reactivity of the particles with the liquid phases formed during sintering. This resulted in a porosity decrease at the particle/matrix

interface in addition to better ceramic/metal cohesion due to improved wettability. Reactivity and wettability were studied using differential thermal analysis, electron microprobe analysis, transmission electron microscopy, and image analysis. Results from pin-on-disc wear testing illustrated the role of the C.Y.D. coating on the wear behavior of the studied materials. Lower wear rates were obtained with the composites containing TiC or TiN-coated Al₂O₃. These results showed that there is a relation between wettability of ceramic particles by the metallic phases and wear resistance of the composites. Kang et al. [25] performed TiC affidavit probes high speed steel and on Si₃N₄ - TiC composite earthenware slicing apparatuses through compound vapor deposition (CVD) utilizing vaporous blend of TiCl₄ CH₄ and H₂. The impacts of the testimony temperature and the creation of reactant gasses on statement rate, structure and microhardness of the TiC film were investigated. Trial device and affidavit methodology are likewise introduced. Kao [26] concentrated on W-C:Hx% coatings with marginally unique hydrogen substance are stored on AISI M2 steel and WC substrates utilizing an uneven magnetron (UBM) sputtering process. The microstructure, attachment and tribological properties of the W-C:Hx% coatings are found to differ with the hydrogen content. For a hydrogen substance of more than 1.2 at.%, the microstructure of the W-C:Hx% covering changes from a columnar shape to a featureless morphology. The grip of the coatings saved on the WC substrates is fundamentally superior to anything that of the coatings stored on the M2 substrates. Of the different coatings, the W-C:H1.3% covering gives the best tribological properties, including the most reduced wear profundity and the least erosion coefficient. Kao [27] examined that Zr-C:Hx coatings are saved on AISI M2 steel plates utilizing an uneven magnetron (UBM) sputtering technique with a solitary zirconium metal target. The outcomes demonstrate that the CH₄ stream rate significantly affects the microstructural, grip and tribological properties of the coatings. In particular, the microstructure changes from a columnar frame to a featureless morphology as the CH₄ stream rate increments. Besides, an expanding CH₄ stream rate builds the covering hardness and results in a lower wear profundity and grating coefficient under sliding with an AISI 1045 steel barrel. Kholmetskii et al. [28] displayed the aftereffects of an examination of the changed surface layers of rapid steel AISI M2 after different sorts of particle implantation (high current particle implantation (HCII), plasma drenching particle implantation (PIII), implantation with isolated particle bars (SIB)). The principle inquire about strategy was Mossbauer spectroscopy, joined with an estimation of mechanical properties of surfaces. A relationship between's a stage structure of altered surface layers and their mechanical properties has been broke down. Kwietniewski et al. [29] concentrated on plasma nitriding preceding TiN statement on single-point turning devices made of rapid steel (HSS) AISI M2 has been done so as to explore the change of machining execution. Optical and checking electron microscopy, microhardness test, sparkle release optical emanation spectroscopy (GDOES) and X-

beam diffraction (XRD) were utilized to portray the nitrided layer. Machining tests utilizing an apparatus life paradigm of mm normal width of the flank destroy land were conveyed to assess the administration execution of the composite devices. The outcomes have shown that cautious consideration must be taken when contrasting level coupons with complex formed substrates. In plasma nitriding frameworks without helper warming, nitrogen fuse relies on upon the plasma current thickness and, in this manner, temperature, which can be altogether higher at the instrument edges, shaping an over the top profound and fragile dispersion case, diminishing the administration life of the duplex treated apparatus. The outcomes likewise showed that utilizing brighter plasma nitriding, the TiN hard covering machining execution could be enhanced significantly.

Lee et al. [30] combined TiB₂/TiC multilayer coatings in a double cathode uneven magnetron sputter-deposition framework with substrate turn. Our past research has shown that all coatings on M2 steel are polycrystalline with TiB₂(001) favored introduction and have a layer structure. Compressive push in these coatings is under 2 GPa, with hardness up to 60 GPa, which compares to 100% hardness upgrade over the govern of-blend esteem. This paper focuses on the tribological and dry machining assessment of these coatings. Coatings were saved on Si(001), cleaned M2 steel, and C3 WC cutting apparatus embeds. From dry piece on-ring tribotesting, the 3:0.5 multilayer (i.e., the layer thickness is 3.0 nm for TiB₂ and 0.5 nm for TiC) covering gives four times change in wear resistance over the uncoated M2 steel substrate. Furthermore, dry machining was performed utilizing AISI 1018 steel and 319 aluminum compound barrel shaped work pieces. Solid TiB₂ and 3:1 multilayer coatings (i.e., the layer thickness is 3.0 nm for TiB₂ and 1.0 nm for TiC) have the best execution: the flank wear was decreased by around a variable of ten contrasted and the uncoated device after a cutting separation of 600 m. Comes about because of cutting power estimations exhibit that to the extent dry machining is worried, there is no immediate connection among cutting strengths, room- temperature hardness, and flank wear. In dry machining of aluminum, the carbide apparatus kept with the 3:1 multilayer, not at all like different instruments, has immaterial development on the rake confront. These outcomes in better and more predictable surface complete the last work piece and less probability for untimely device breakage. Li et al. [31] plasma splashed shower dried mullite powder on to steel substrates to formmullite covering. The microstructure of mullite covering and its tribological properties combined with Si₃N₄ ball under dry sliding and additionally water and hydrochloric corrosive arrangement were examined. It demonstrates that mullite covering displays high porosity and holds an indistinct stage. The mullite covering Si₃N₄ shows extraordinarily diminished coefficient of erosion under HCl arrangement, because of the limit grease of the hydrated silica layer and the hydrodynamic oil of the corrosive arrangement. Also, since the wedging activity of water, the mullite covering has the most astounding particular wear rate submerged environment. Liu et al. [32] arranged TiC/M2 rapid steel composite powders by mechanical alloying. Molecule

portrayal and sinterability of the composite powders were explored. A moderately little molecule estimate and a limited molecule measure appropriation were acquired after 20 h of processing. Perceptions of cleaned cross-area indicated uniform circulation of fortification particles. The powders were hot compacted with PAN250 cover. The conservative was then debound and sintered. DTA investigation of the debound part demonstrated that fluids began to show up after 1040.7°C. As fluids have more noteworthy chance to frame at the interfaces between the fortification particles and the network and in addition the inside layer surfaces in the huge individual composite particles, less fine compel follows up on the outskirts of the composite particles. In this way, the supersolidus fluid stage sintering of the composite materials was upset. Microstructure examination demonstrated the development of MC carbides with high substance of TiC particles. Grain development and microstructure coarsening were impeded by the blended stage microstructure. Mandaloi et al. [33] researched the crystalline structure of AISI M2 steel by utilizing copper compound terminal as a part of electric release machining (EDM) prepare has been finished. Additionally, material expulsion rate (MRR), terminal wear rate (EWR) and surface unpleasanliness (SR) of the steel material on the premise of three variable info handle parameters were examined trailed by investigation of change (ANOVA), relapse examination and distinctive portrayal methods. In X-beam diffraction (XRD) concentrate on, it has been watched that the pinnacle has been widened and moved with the development of new nano crystalline stages. Most minimal surface harshness of 1.19 ± 0.9 lm and 9.25 ± 0.5 nm was seen through optical surface profiler (OSP) and nuclear drive microscopy (AFM), individually. Mohammadzadeh et al. [34] concentrated on wear conduct of extinguished tempered AISI M2 apparatus steel tests after plasma nitriding at various N₂-H₂ plasma gas streams containing 25, 50 and 75 sccm N₂. Plasma nitriding was performed at 450 °C for 8 h under coasting potential utilizing a plasma reactor furnished with a radio recurrence control generator. Microstructure, stage piece, nitrided layer thickness, hardness and surface unpleasanliness of the examples were concentrated on utilizing optical microscopy, X-beam diffraction, microhardness and surface profilometry estimations. Dry sliding wear resistance of tests was controlled by performing ball-on-circle wear testicles. Contingent upon the nitrogen content, sliding wear resistance might be enhanced somewhere around 20 and 90% as for the un-nitrided substrate. Among the nitride tests the most extreme and least wear resistance was gotten at plasma gasses containing higher and bring down H₂ divisions, individually. Diminishing wear resistance with expanding N₂ stream rate in the plasma gas ascribed to arrangement of the hard and weak compound (white) layer on the specimen surface and improvement of leftover push profiles. Naz et al. [35] concentrated on that plasma preparing gives a helpful instrument to changing the metallic and non-metallic surfaces. Plasma particle nitriding of M2 high speed steel was completed by utilizing a low weight plasma chamber and a 50 Hz beat DC source. By keeping the nitrogen-hydrogen (60:40) blend weight steady at 3 mbar and shifting the plasma

treatment time from 1 to 4 h, the nitriding was done in the strange shine area at 600°C substrate temperature. The resultant changes in surface properties of the plasma treated specimens were explored by utilizing X-beam diffraction, examining electron microscopy, and Vickers' microhardness trying. These examinations affirmed the arrangement of a compound layer on plasma uncovered surface. The layer thickness was at first expanded with nitriding time and afterward began to diminish after 2 h treatment. In X-beam diffraction information, a down-move in the first diffraction pinnacles was seen which affirms the nitrogen dispersion and arrangement of compound layer on the uncovered surface. A huge change in surface hardness of hardware steel was additionally observed particularly after 2 h of plasma treatment. Shukrullah et al. [36] explored that plasma particle nitriding is an adaptable and multifunctional casehardening strategy utilized as a part of the given study for surface changes of AISI M2 apparatus steel (0.9% C, 4.2% Cr, 5.0% Mo, 6.0% W, and 2.0% V). By changing the plasma treatment time from 1 to 4 hour and the filling gas weight from 1 to 4 mbar, the surface nitriding was done in the anomalous gleam area of a beat DC release. Pre-plasma treatment warming of the examples was performed by a warming unit; the substrate temperature was raised to 500°C, with the inclining rate of 15°C. The resultant minute changes in the surface properties of the plasma treated device steel were considered with various surface portrayal strategies, for example, X-beam Diffraction, Scanning Electron Microscopy and Vickers' microhardness trying. These examinations affirmed the development of a compound layer on the plasma uncovered surface. It was watched that the layer thickness at first increments and after that abatements with nitriding time. Comparable results were gotten for expanding filling gas weight. The X-beam Diffraction comes about demonstrated a downshift in the first diffraction crests, which affirms the nitrogen dissemination into the uncovered surface and a compound layer development. A huge change in the surface hardness was additionally distinctive, which may be because of the nitrogen dispersion and the development of a compound layer on the objective surface. Niu et al. [37] performed Laser cladding of gas-atomized M2 high speed steel on the mellow steel substrate utilizing examine rates of 1 to 10 mm/s, filter line spacings of 0.1 to 0.5 mm, and powder sustain rates of 1 to 10 g/min, for a given laser force of 400 W. This article exhibits a point by point investigation of the microstructural development amid laser cladding. The impact of output rate, examine line dispersing, and powder sustain rate on cooling rate can be portrayed as far as the cladding-layer thickness, i.e., the more slender the layer, the higher the cooling rate. The level of metastability in the laser-clad microstructure can be comprehended as far as the cross section parameter of the bcc stage. The grid parameter of the bcc stage expanded with expanding layer thickness and achieved a most extreme esteem at a thickness of 0.3 mm. Correspondingly, the microstructure shifted from a cell or dendritic structure of d ferrite and austenite to a blend of martensite and held austenite. Nonetheless, promote expanding the layer thickness prompted a lessening of both the cross section parameters of

the bcc stage and the extent of held austenite in the martensite. This was joined by an expansion of the measure of carbide at the earlier austenitic grain limits and a diminishing of the carbon content in the martensite and held austenite. Oliveira et al. [38] delivered hard and wear safe layers on AISI H13 and M2 steels by TRD (thermoreactive statement and dissemination) treatment in liquid borax included with ferroniobium and aluminum, at 1000 - C for 4 h. Optical microscopy, X-beam diffraction and Vickers microhardness were utilized to examine the specimens. The wear resistances of the layers were assessed by the smaller scale grating (ball-cratering) wear technique. The wear conduct of the uncoated and ionitrided AISI H13 steel was additionally broke down for correlation. Very much characterized layers shaped on both AISI H13 and M2 steels, with amazing thickness normality. These layers comprised of niobium carbide (NbC) as indicated by X-beam examinations. In correlation with ionitrided H13 test, the NbC layer likewise was more wear safe. The niobium carbide layers stored on AISI H13 and M2 displayed comparative small scale grating wear conduct. Worn surfaces demonstrated that the wear system in these layers was rough wear: cutting scraped area and moving scraped spot. Othman et al. [39] researched that bond between covering substrate frameworks is a critical figure deciding the execution and sturdiness of covered designing segments. This paper audits the microstructures and bond quality of titanium nitride (TiN) covering created utilizing two diverse handling techniques: compound vapor statement and physical vapor affidavit. Three strategies to assess the grip quality of the coatings, in particular the space test, laser spallation strategy, and scratch test are exhibited and examined as far as their working standards, their points of interest and detriments. The outward and natural elements affecting the grip quality of covering substrate framework, especially for TiN covering, are additionally explained. The instruments and methods of covering disappointments in grip assessment procedures are talked about concerning the variety of covering substrate framework blend, for example, weak, bendable, delicate, and hard. Conceivable changes on the grip quality of covering substrate frameworks, concentrating on the handling techniques, arrangements, and structures of coatings, are likewise reported. Ozbek et al. [40] did Boronizing thermochemical treatment in a strong medium comprising of EKabor powders at 850 C, 900 C and 950 C for 2, 4, 6 and 8 h, individually. The nearness of borides FeB and Fe2B of steel substrate was affirmed by optical microscopy and examining electron microscopy (SEM). Contingent upon process time and temperature the thickness of boride layer measured by a computerized instrument connected to an optical magnifying lens went from 3 to 141 mm. Layer development energy were broke down by measuring the degree of infiltration of the FeB and Fe2B sublayers as an element of boronizing time and temperature. In addition, an endeavor was made to research the likelihood of anticipating the isothickness of boride layer variety and to build up an observational relationship between process parameters and boride layer thickness. Pessin et al. [41] assessed the impacts of the plasma nitriding process on AISI M2 apparatus steel. In past work, treatment time and

temperature were changed to distinguish the treatment conditions for good wear conduct. In the present work, the treatment time was altered while temperature and gas weight were shifted. Tests were described by sparkle release optical spectroscopy, checking electron microscopy, X-beam diffraction, surface microhardness and wear test. The examples nitrided at 400 and 900 Pa demonstrated the best wear execution, which is conceivably because of lessening of the erosion coefficient and the low cement wear watched. Tests handled at 200 Pa demonstrated spalling amid the wear test, showing a weak surface. Riabkina-Fishman et al. [42] examined to create practically evaluated, carbide alloyed multilayer coatings on M2 high speed steel by laser alloying with direct infusion of WC powder into the dissolve pool. Contingent upon the alloying degree, four unique sorts of structures were seen in laser alloyed coatings; they were described by filtering electron microscopy and X-beam microanalysis. Different laser alloying with bar control diminishing at each progressive stage was utilized for delivering a triple-layer covering with tungsten content expanding from layer to layer and achieving 75 wt.% in the upper layer. The watched hardness was in the 1100–1200 HV run for single layer coatings with 40–50% W and as high as 1600 HV in the upper layer of a triple covering with 75% W. The covering with 58 wt% W indicated wear resistance five times as high as contrasted and the unalloyed laser-dissolved M2 steel. Sen et al. [43] contemplated that niobium boride covering was connected on pre-boronized AISI M2 steel by the thermo-responsive affidavit method in a powder blend comprising of ferro-niobium, ammonium chloride and alumina at 950 °C for 1–4 h. The covered examples were portrayed by X-beam diffraction, checking electron magnifying instrument and small scale hardness tests. Niobium boride layer framed on the pre-boronized AISI M2 steel was smooth, minimal and homogeneous. X-beam ponders demonstrated that the stages shaped on the steel surfaces are NbB, Nb₃B₂, FeB and Fe₂B.

III. CONCLUSION

An extensive review on effect of surface coating on working of M2 tool steel has been performed. There are various conclusions that are drawn from the experiments and studies that were performed in this field. Some of the conclusions are listed below.

- The cracks and other irregularities on specimen's surface that are formed during EDM machining process can be compensated by the material removed from the powder metallurgy electrodes.
- Tool wear rate of powder metallurgy electrode can be increased by using novel technique that is abrasive powder mixed in dielectric fluid during EDM, which is also beneficial for the work piece surface treatment.
- Cost and time can be significantly reduced as the surface of the work piece is treated simultaneously during machining process.
- Surface coating on the surface of M2 tool steel can

enhance the accuracy of the work piece dimensions as it increases hardness of the cutting tool.

- Surface quality improvement and modification of M2 tool steel surface has been reported by many authors via surface coating. However other machining operations especially EDM, a non-conventional machining technique can be tried to improve the machined surface quality via localized surface treatment.

The study carried out in this work allows us to work on treating the surface of the M2 tool steel. It is found that the most effective technique for the surface treatment during machining is EDM. This can be achieved by preparing the electrodes by powder metallurgy process. Further research on selecting the more appropriate abrasive material for dielectric and powder metallurgy tool electrode material is suggested.

References

- [1] A. da Silva Rocha, T. Strohaecker, V. Tomala, T. Hirsch, Microstructure and residual stresses of a plasma-nitrided M2 tool steel, *Surface and Coatings Technology*, Volume 115, Issue 1, 15 June 1999, Pages 24-31.
- [2] Katia Dyrda, Michael Sayer, Critical loads and effective frictional force measurements in the industrial scratch testing of TiN on M2 tool steel, *Thin Solid Films*, Volumes 355–356, 1 November 1999, Pages 277-283.
- [3] Akbari, R. Mohammadzadeh, C. Templier, J.P. Riviere, Effect of the initial microstructure on the plasma nitriding behavior of AISI M2 high speed steel, *Surface and Coatings Technology*, Volume 204, Issue 24, 15 September 2010, Pages 4114-4120.
- [4] V.A. Alves, C.M.A. Brett and A. Cavaleiro, Influence of heat treatment on the corrosion of high speed steel, *Journal of Applied Electrochemistry* 31: pp. 65-72, 2001.
- [5] J. Arias, M. Cabeza, G. Castro, I. Feijoo, P. Merino and G. Pena, Modification of AISI M2 high-speed tool steels after laser-surface melting under different operating conditions, *Welding International* Vol. 27, No. 1, January 2013, pages 1–9.
- [6] J.C. Avelar-Batista, E. Spain, J. Housden, G.G. Fuentes, R. Rebole', R. Rodriguez b, F. Montala', L.J. Carreras, T.J. Tate, Characterisation of Pristine and Recoated electron beam evaporation plasma-assisted physical vapour deposition Cr–N coatings on AISI M2 steel and WC–Co substrates, *Thin Solid Films*, Volume 491, Issues 1–2, 22 November 2005, Pages 177-183.
- [7] J.C. Avelar-Batista, E. Spain, J. Housden, A. Matthews, G.G. Fuentes, Plasma nitriding of Ti₆Al₄V alloy and AISI M2 steel substrates using D.C. glow discharges under a triode configuration *Surface and Coatings Technology*, Volume 200, Issues 5–6, 21 November 2005, Pages 1954- 1961.
- [8] Harish C. Barshilia, B. Deepthi, G. Srinivas, K.S. Rajam, Sputter deposited low-friction and tough Cr₃Si₄N₄ nanocomposite coatings on

plasma nitrided M2 steel ,Vacuum, Volume 86, Issue 8, 29 February 2012, Pages 1118-1125.

[9] Jos'e Divo Bressan, Giovanni A. Battiston, Rosalba Gerbasi, Deivid Paganini Daros, Leonidas Mamani Gilapa, Wear on tool steel AISI M2, D6 and 52100 coated with Al2O3 by the MOCVD process, Journal of Materials Processing Technology, Volume 179, Issues 1–3, 20 October 2006, Pages 81-86.

[10] Alexander S. Chaus and Maria Domankova, Precipitation of Secondary Carbides in M2 High-Speed Steel Modified with Titanium diboride, Journal of Materials Engineering and Performance, Volume 22(5) May 2013, pages 1412–1420.

[11] N.N. Cherendaa, V.V. Uglov, V.M. Anishchik, A.K. Stalmashonak, V.M. Astashinski, A.M. Kuzmitski, G. Thorwarth, B. Stritzker, Modification of AISI M2 steel tribological properties by means of plasma mixing, Vacuum, Volume 81, Issue 10, 15 June 2007, Pages 1337-1340. [12] M.R. Hilton, G.J. Vandentop, M. Salmeron and G.A. Somorjai, Tin Coatings on M2 steel produced by Plasma assisted chemical vapou Deposition, Thin Solid Films, Vol. 154 1987, pages 377- 386

[13] D. Das, A.K. Dutta, K.K. Ray, On the refinement of carbide precipitates by cryotreatment in AISI D2 steel, Philosophical Magazine, Vol. 89, No. 1, 1 January 2009, 55–76.

[14] Guaiz,qneng Don, Merzg Hun, Jim Li, Hing-Yin Ma, and Yriubai Xie, Tribological behaviors of spot-textured TiN coatings on M2 high- speed steel under boundary lubricated conditions, Journal of Universdy of Science and Technology Beijing, Volume 14, Number 4. August 2007, Page 350.

[15] Simranpreet Singh Gill, Jagdev Singh, Rupinder Singh, and Harpreet Singh, Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization, Journal of Materials Engineering and Performance, Volume 21(7) July 2012, pages 1320–1326.

[16] S.F. Gnyusov, A.A. Ignatov, V.G. Durakov, S.Yu. Tarasov, The effect of thermal cycling by electron-beam surfacing on structure and wear resistance of deposited M2 steel, Applied Surface Science, Volume 263, 15 December 2012, Pages 215-222.

[17] C. L. Gogte1, Kumar M. Iyer, R. K. Paretkar, and D. R. Peshwe, Deep Subzero Processing of Metals and Alloys: Evolution of Microstructure of AISI T42 Tool Steel, Materials and Manufacturing Processes, Vol 24, pages 718–722, 2009.

[18] Guochao Gu, Raphaël Pesci, Laurent Langlois, Eric Becker, Régis Bigot, Microstructure investigation and flow behavior during thixoextrusion of M2 steel grade, Journal of Materials Processing Technology, Vol 216, 2015, pages 178–187.

[19] M. Hua, H.Y. Ma, C.K. Mok, and J. Li, Tribological behavior of patterned PVD TiN coatings on M2 steel, Tribology Letters, Vol. 17, No. 3, October 2004.

[20] M. Hua, H.Y. Ma, J. Li, C.K. Mok, Tribological behaviours of patterned PVD TiN spot coatings on M2 steel coated with different bias voltages, Surface & Coatings Technology, Vol 200, 2006, pages 3612 – 3625.

[21] M.J. Jackson, G.M. Robinson, M.D.H. Gill, W. O'Neill, The effect of nozzle design on laser micro-machining of M2 tool steels, Journal of Materials Processing Technology, Volume 160, Issue 2, 20 March 2005, Pages 198-212.

[22] F. Jahrling, D.M. Ruck, H. Fuess, Hardness, wear and microstructure of carbon implanted AISI M2 high speed steel, Surface and Coatings Technology, Volume 111, Issues 2–3, 29 January 1999, Pages 111-118.

[23] C. Jouanny-Tresy, M. Vardavoulias, and M. Jeandin, C.V.D. Coating of Alumina Reinforcing Particles to Improve the Wear Resistance of H.8.S. Basedl Composites, Materials and Manufacturing Processes, Vol 9, No.5, pages 901-920, 1994.

[24] C.J. Kang, D.W. Kim, C.O. Park, and John S. Chun, Chemical Vapor Deposition of Titanium Carbide on AISI M2 Tool Steels and Si3N4-TiC Ceramic Composite, Materials and Manufacturing Processes, Vol. 5(1), pages 63-78, 1990.

[25] W.H. Kao, Microstructure, adhesion and tribological properties of W–C:Hx% coatings deposited on M2 and WC substrates, Materials Science and Engineering A, Vol. 432, 2006, pages 253–260. Wen-Hsien Kao, The tribological properties of Zr-C:H coatings deposited on AISI M2 substrate, Wear, Vol. 264, 2008, pages 368–373.

[26] A.L. Kholmetskii, V.M. Anischik, V.V. Uglov, D.P. Rusalsky, A.K. Kuleshov, J.A. Fedotova, CEMS investigations of AISI M2 steel after ion implantation by nitrogen, boron and carbon, Vacuum, Vol. 69, 2003, pages 521–527.

[27] C. Kwietniewski, W. Fontana, C. Moraes, A. da S. Rocha, T. Hirsch, A. Reguly, Nitrided layer embrittlement due to edge effect on duplex treated AISI M2 high-speed steel, Surface and Coatings Technology, Vol. 179, 2004, pages 27–32.

[28] Kitty W. Lee, Yip-Wah Chung, Chad Korach, Leon M. Keer, Tribological and dry machining evaluation of superhard TiB2/TiC multilayer coatings deposited on Si(001), M2 steel, and C3 WC cutting tool inserts using magnetron sputtering, Surface & Coatings Technology, Vol. 194, 2005, pages 184–189.

[29] Shuangjian Li, Xing Xi, Guoliang Hou, Yulong An, Xiaoqin Zhao, Huidi Zhou, Jianmin Chen, Preparation of plasma sprayed mullite coating on stainless steel substrate and investigation of its environmental dependence of friction and wear behavior, Tribology International, Vol. 91, 2015, pages 32–39.

[30] Z.Y. Liu, N.H. Loh, K.A. Khor, S.B. Tor, Mechanical alloying of TiC/M2 high speed steel composite powders and sintering investigation, Materials Science and Engineering, Vol. A311, 2001, pages 13–21.

[31] Gangaram Mandaloi, Subhash Singh, Pradeep Kumar, Kaushik Pal, Effect on crystalline structure of AISI M2 steel using copper electrode through material removal rate, electrode wear rate and surface finish, Measurement, Vol. 61, 2015, pages 305–319.

[32] R. Mohammadzadeh, A. Akbari, M. Drouet, Microstructure and wear properties of AISI M2 tool steel on RF plasma nitriding at different N2–H2 gas compositions, Surface and Coatings Technology, Volume 258, 15 November 2014, Pages 566-573.

[33] M.Y. Naz, S. Shukrullah, M.A. Javaid, A. Ghaffar, N.U. Rehman, M.Y. Naz, Surface Hardening of M2 High Speed Steel Using 50 Hz Pulsed DC Source With Nitrogen as a Base Gas, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2015. Vol. 45, pages 1057–1062.

[34] M. Y. Naz, S. Shukrullah, A. Ghaffar, I. Shakir, S. Ullah, M. Sagir, M. Pervaiz, Surface Morphology and Mechanical Strength of AISI M2 Tool Steel Treated in Abnormal Glow Region of Plasma, Surface Engineering and Applied Electrochemistry, 2015, Vol. 51, No. 1, pp. 58–64.

[35] H.J. Niu and I.T.H. Chang, Microstructural Evolution during Laser Cladding of M2 High-Speed Steel, Metallurgical and Materials Transactions, Vol. 31A, October 2000, pages 2616-2625.

[36] C.K.N. Oliveira, R.M. Munoz Riofano, L.C. Casteletti, Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels,

Surface and Coatings Technology, Volume 200, Issues 16–17, 27 April 2006, Pages 5140-5144.

[37] M.F. Othman, A.R. Bushroa, Wan Normimi Roslini Abdullah, Evaluation techniques and improvements of adhesion strength for TiN coating in tool applications: a review, *Journal of Adhesion Science and Technology*, Vol. 29, No. 7, 569–591, 2015.

[38] I. Ozbek, C. Bindal, Kinetics of borided AISI M2 high speed steel, *Vacuum*, Volume 86, Issue 4, 11 November 2011, Pages 391-397.

[39] M.A. Pessin, M.D. Tier, T.R. Strohaecker, A. Bloyce, Y. Sun, T. Bell, The effects of plasma nitriding process parameters on the wear characteristics of AISI M2 tool steel, *Tribology Letters*, Vol. 8 (2000), pages 223–228.

[40] M. Riabkina-Fishman a, E. Rabkin, P. Levin, N. Frage, M.P. Dariel, A. Weisheit, R. Galun, B.L. Mordike, Laser produced functionally graded

tungsten carbide coatings on M2 high-speed tool steel, *Materials Science and Engineering: A*, Volume 302, Issue 1, 15 April 2001, Pages 106-114.

[41] Ugur Sen, Suleyman Serdar Pazarlioglu, Saduman Sen, Niobium boride coating on AISI M2 steel by boro-niobizing treatment, *Materials Letters*, Volume 62, Issue 16, 15 June 2008, Pages 2444-2446

[42] M. Sivaraj & N. Selvakumar, Experimental Analysis of Al-TiC Sintered Nano Composite on EDM Process Parameters Using ANOVA, *Materials and Manufacturing Processes*, (2015) DOI: 10.1080/10426914.2015.1048471.

[43] V.V. Uglov, V.M. Anishchik, A.M. Vetushka, I.N. Rumyanceva, E. Richter, Structure and phase transformations of AISI M2 high-speed tool steel treated by PIII and subsequent compression plasma flows of nitrogen, *Surface and Coatings Technology*, Volume 183, Issue 1, 1 May 2004, Pages 35-44.