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Abstract—This paper investigate long-term tracking of
unknown objects in a video stream. The object is defined
by its location and extent in a single frame. In every frame
that follows, the task is to determine the objects location
and extent or indicate that the object is not present. A
novel approach called Tracking-Learning-Detection (TLD)
framework that explicitly decomposes the long term
tracking task into tracking, learning and detection. The
tracker follows the object from frame to frame. The
locator localizes all appearances that have been observed
so far and corrects the tracker if necessary. The learning
estimates the detectors errors and updates it to avoid these
errors in the future.

. INTRODUCTION

Consider a video stream taken by a hand-held camera
depicting various objects moving in and out of the cameras
field of view. Given a bounding box defining the object of
interest in a single frame, our goal is to automatically
determine the objects bounding box or indicate that the object
is not visible in every frame that follows. The video stream is
to be processed at frame-rate and the process should run
indefinitely long. We refer to this task as long-term tracking.

To enable the long-term tracking, there are a number of
problems which need to be addressed. The key problem is the
detection of the object when it reappears in the cameras field
of view. This problem is aggravated by the fact that the object
may change its appearance thus making the appearance from
the initial frame irrelevant. Next, a successful long-term
tracker should handle scale and illumination changes,
background clutter, partial occlusions and operate in real-time.
The long-term tracking can be approached either from
tracking or from detection perspectives. Tracking algorithms
estimate the object motion. Trackers require only
initialization, are fast and produce smooth trajectories. On the
other hand, they accumulate error during run-time (drift) and
typically fail if the object disappears from the camera view.
Research in tracking aims at developing increasingly robust
trackers that track longer. The post-failure behaviour is not
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directly addressed. Detection-based algorithms estimate the
object location in every frame independently. Detectors do not
drift and do not fail if the object disappears from the camera
view. However, they require an offline training stage and
therefore cannot be applied to unknown objects.

We introduce the design of a novel framework (TLD)
that decomposes the long-term tracking task into three sub-
tasks: tracking, learning and detection. Each sub-task is
addressed by a single component and the components operate
simultaneously. The tracker follows the object from frame to
frame. The detector localizes all appearances that have been
observed so far and corrects the tracker if necessary. The
learning estimates detectors errors and updates it to avoid
these errors in the future. While a wide range of trackers and
detectors exist, we are not aware of any learning method that
would be suitable for the TLD framework. Such a learning
method should:

e deal with arbitrarily complex video streams where the
tracking failures are frequent

e never degrade the detector if the video does not
contain relevant information

e operate in real-time
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Figure 1.1: The block diagram of the TLD framework.
For all these challenges, we rely on the various information

sources contained in the video. Consider, for instance, a single
patch denoting the object location in a single frame. This patch
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defines not only the appearance of the object, but also
determines the surrounding patches, which define the
appearance of the background. When tracking the patch, one
can discover different appearances of the same object as well
as more appearances of the background. This is in contrast to
standard machine learning approaches, where a single
example is considered independent from other examples. This
opens interesting questions how to effectively exploit the
information in the video during learning.

A. Problem Formulation

Manual tracking requires the interaction with the user in
every frame. Automated tracking methods use a priori
information in order to initialize the tracking process
automatically. In semi-automated tracking, user input is
required in order to initialize the tracking process. Another
challenge is introduced by appearance variations of the target
itself. Intrinsic appearance variability includes pose variation
and shape deformation, whereas extrinsic appearance
variability includes illumination change, camera motion and
different camera viewpoints. Approaches that maintain a
template of the object of interest typically face the template
update problem that relates to the question of how to update an
existing template so that it remains a representative model. If
the original template is never changed, it will eventually no
longer be an accurate representation of the model. When the
template is adapted to every change in appearance, errors will
accumulate and the template will steadily drift away from the
object. This problem is closely related to the stability-
plasticity dilemma, which relates to the trade-off between the
stability required to retain information and the plasticity
required for new learning. This dilemma is faced by all
learning systems [1]. Objects undergo occlusions when
covered by other object or when they leave the field of view of
the camera. In order to handle such cases, a mechanism is
necessary that re-detects the object independently of its last
position in the image. Requirements on the execution time
pose another difficulty. Object tracking methods do not take
the environment factors into consideration, and are therefore
not efficient and effective. In Object tracking methods the
environment constraints often results in high computational
overhead and possibly low tracking accuracy. In the existing
works of video object tracking, the state vector only includes
the dynamics characteristics of the object, e.g., location,
orientation, scale, etc. To tackle all these challenges, introduce
the design of a novel framework (TLD) that decomposes the
long-term tracking task into three sub-tasks: Detection,
tracking and learning. Each sub-task is addressed by a single
component and the components operate simultaneously. The
tracker follows the object from frame to frame. The detector
localizes all appearances that have been observed so far and
corrects the tracker if necessary. The learning estimates
detectors errors and updates it to avoid these errors in the
future.
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Il. LITERATURE SURVEY

Video tracking is the process of locating a moving object (or
multiple objects) over time using a camera. It has a variety of
uses, some of which are: human-computer interaction, security
and surveillance, video communication and compression,
augmented reality, traffic control, medical imaging [1] video
editing Video tracking can be a time consuming process due to
the amount of data that is contained in video. Adding further
to the complexity is the possible need to use object recognition
techniques for tracking [5].

P. Sand et al.[4] tells When tracking planar objects,
the motion model is a 2D transformation (affine
transformation or homography) of an image of the object (e.g.
the initial frame) . Ramanan et al. [6] proposed When the
target is a rigid 3D object, the motion model defines its aspect
depending on its 3D position and orientation. Lowe et al. [1]
tells for video compression, key frames are divided into
macroblocks. The motion model is a disruption of a key
frame, where each macroblock is translated by a motion vector
given by the motion parameters. The image of deformable
objects can be covered with a mesh; the motion of the object is
defined by the position of the nodes of the mesh.

A. Match Moving

In cinematography, match moving is a cinematic technique
that allows the insertion of computer graphics into live-action
footage with correct position, scale, orientation, and motion
relative to the photographed objects in the shot. The term is
used loosely to describe several different methods of
extracting camera motion information from a motion picture.
Sometimes referred to as motion tracking, match moving is
related to photoscoping and photogrammetry.

Match moving is sometimes confused with motion capture,
which records the motion of objects, often human actors,
rather than the camera. Typically, motion capture requires
special cameras and sensors and a controlled environment
(although recent developments such as the Kinetic camera
have begun to change this). Match moving is also distinct
from motion control photography, which uses mechanical
hardware to execute multiple identical camera moves. Match
moving, by contrast, is typically a software-based technology,
applied after the fact to normal footage recorded in
uncontrolled environments with an ordinary camera.

I1l. SYSTEM DESIGN

Obiject tracking methods do not take the environment
factors into consideration, and are therefore not efficient and
effective. In Object tracking methods the environment
constraints often results in high computational overhead and
possibly low tracking accuracy. In the existing works of video
object tracking, the state vector only includes the dynamics
characteristics of the object, e.g., location, orientation, scale,
etc. A live video is captured from a web camera of 720p
format which has a resolution of 1280 x 720(16: 9) having
frame rate of 20fps. An object of interest is selected within the
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frame of video by the user to initialize the process which is
known as semi-automated system where no further user input
is required. The object is the detected in each frame of the
video by template matching method. A bounding box is
formed at the detected object in the live video. The object is
then tracked by checking each frame of the live video. But as
the time goes on the dimension and shape of the object is
altered. So initial image of an object is irrelevant at the point
of time. So the learning processes changes the image of an
object time to time when is shape or dimension is altered. And
again the changed object is detected in the video by template
matching method. This loop goes on till the object of interest
is within the frame. Fig. 3.1 depicts the workflow of the
approach.

o  We explicitly decompose the long-term tracking task
into tracking, learning and detection.

e Tracker estimates the object motion under the
assumption that the object is visible and its motion is
limited

o Detector performs full scanning of the image to
localize all appearances that have been observed in
the past.

e Learning observes performance of both, the tracker
and the detector, identifies errors of the detector and
generates training examples to avoid these errors in

the future.

Initinlize the process by user
selection of the objedt o tradkced

v

Dretection of cbiec in each
trame of the vedia

Tracking the doject in
the liwa vidaa

Teamingthe chject for
change in shap e and
dirnension

Fig. 1. The process is initialized by manually selecting the object of interest.
No further user interaction is required

A. Object Tracking

Object tracking is the tasks of estimation of the motion
trackers. Typically assumes that the object is visible
throughout the sequence. Various representations of the object
are used in practice, for example points articulated models or
grid models [1]. Here we focus on the methods that represent
the objects by geometric shapes and their motion is estimated
between consecutive frames, i.e. the so-called frame-to-frame
tracking [7]. Template tracking is the most straightforward
approach in that case. The object is described by a target
template and the motion is defined as a transformation that
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minimizes mismatch between the target template and the
candidate patch. Template tracking can be either realized as
static or adaptive [1].

Developed a novel learning method (P-N learning) which
estimates the errors by a pair of "experts":

1. P-expert estimates missed detections, and

2. N-expert estimates false alarms.

P-expert exploits the temporal structure in the video and
assumes that the object moves along a trajectory. The P-expert
remembers the location of the object in the previous frame and
estimates the object location in current frame using a frame-to-
frame tracker. If the detector labelled the current location as
negative (i.e. made false negative error), the P-expert
generates a positive example.

N-expert exploits the spatial structure in the video and
assumes that the object can appear at a single location only.
The N-expert analyzes all responses of the. Detector in the
current frame and the response produced by the tracker and
selects the one that is the most confident. Patches that are not
overlapping with the maximally confident patch are labelled
as negative. The maximally confident patch re-initializes the
location of the tracker.

The P-N learning is initialized by supervised training of
so-called initial detector. In every frame, the P-N learning
performs the following steps: (i) evaluation of the detector on
the current frame, (ii) estimation of the detector errors using
the P-N experts, (iii) update of the detector by labelled
examples output by the experts. The detector obtained at the
end of the learning is called the final detector.

B. Design Model

e DFD LEVEL-0

At this Level-0 Camera capture the Live Video. And store this
data into the template buffer as a template.

sToORE
CAMERA

Fig. 2. DFD LEVEL- 0

e DFDLEVEL-1

At this Level-1 Learn the object search and match object in the
buffer and Detect in the frame.

LEARM THE ORIECT|

Fig. 3. DFD LEVEL- 0

SEARCH THE ORECT

e DFD LEVEL-0

At this level-2 we take the templates and match the objects in
the frame and track the live position.
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Fig. 4. DFD LEVEL-0

C. Library used

OpenCV is a library of programming functions mainly
aimed at real-time computer vision, developed by Intel, and
now supported by Willow Garage and Itseez. It is free for use
under the open source BSD license [1]. The library is cross-
platform. It focuses mainly on real-time image processing. If
the library finds Intel's Integrated Performance Primitives on
the system, it will use these proprietary optimized routines to
accelerate it [9].

D. Template Matching

Object detector is based on a sliding-window approach,
which is illustrated in Fig.4.1. The image at the top is
presented to the object detector, which then evaluates a
classification function at certain predefined subwindows
within each input image. Depending on the size of the initial
object, we typically employ 50,000 to 200,000 subwindows
for an image of VGA (640 x 480) resolution. Each subwindow
is tested independently whether it contains the object of
interest. Only if a subwindow is accepted by one stage in the
cascade, the next stage is evaluated. Cascaded object detectors
aim at rejecting as many non-relevant subwindows with a
minimal amount of computation. The four stages that we use
for image classification are shown below the input image.
First, we use a background subtraction method in order to
restrict the search space to foreground regions only. This stage
requires a background model and is skipped if it is not
available. In the second stage all subwindows are rejected that
exhibit a variance lower than a certain threshold. The third
stage comprises an ensemble classifier based on random ferns.
The fourth stage consists of a template matching method that
is based on the normalised correlation coefficient as a
similarity measure. We handle overlapping accepted
subwindows by employing a non-maximal suppression
strategy.Each subwindow is tested independently whether it
contains the object of interest. Only if a subwindow is
accepted by one stage in the cascade, the next stage is
evaluated. Cascaded object detectors aim at rejecting as many
non-relevant subwindows with a minimal amount of
computation [1]. The four stages that we use for image
classi_cation are shown below the input image. First, we use a
background subtraction method in order to restrict the search
space to foreground regions only. This stage requires a
background model and is skipped if it is not available. In the
second stage all subwindows are rejected that exhibit a
variance lower than a certain threshold. The third stage
comprises an ensemble classifier based on random ferns. The
fourth stage consists of a template matching method that is
based on the normalised correlation coefficient as a similarity
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measure. Handle overlapping accepted subwindows by
employing a non-maximal suppression strategy.[1]

1. Sliding-Window Approach

In sliding-window-based approaches for object detection,
subimages of an input image are tested whether they contain
the object of interest. Potentially, every possible subwindow in
an input image might contain the object of interest.

We need two primary components:;
a. Source image (I): The image in which we expect to
find a match to the template image
b. Template image (T): The patch image which will be
compared to the template image.

Our goal is to detect the highest matching area:

Fig. 5. Source image + template image

e To identify the matching area, we have to compare
the template image against the source image by
sliding it:

Fig. 6. Sliding-window-based approaches for object detection

e By sliding, we mean moving the patch one pixel at a
time (left to right, up to down). At each location, a
metric is calculated so it represents how good or bad
the match at that location is (or how similar the patch
is to that particular area of the source image).

Fig. 7. Best matched result.
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For each location of T over I, you store the metric in the result
matrix (R). Each location (x,y) in R contains the match metric:
the image above is the result R of sliding the patch with a
metric TM_CCOEFF_NORMED. The brightest locations
indicate the highest matches. As you can see, the location
marked by the red circle is probably the one with the highest
value, so that location (the rectangle formed by that point as a
corner and width and height equal to the patch image) is
considered the match.

2. Matching methods available in OpenCV

OpenCV implements Template matching in the function
matchTemplate( ). The available methods are 6:

Square difference matching method (method =
CV_TM_SQDIFF): These methods match the squared
difference, so a perfect match will be 0 and bad matches will
be large:

Rsq_diff (x; y) = oy {T(X, y) - 1(x + X' y +y))?

Correlation matching methods (method = CV_TM_CCORR)
. These methods multiplicatively match the template against
the image, so a perfect match will be large and bad matches
will be small or 0.

Recorr(x; y) = Sy (T(X4Y) - 1(x + Xy + y)]°

Correlation coefficient matching methods (method =
CV_TM_CCOEFF) : These methods match a template relative
to its mean against the image relative to its mean, so a perfect
match will be 1 and a perfect mismatch will be 1; a value of 0
simply means that there is no correlation (random alignments).
Recoeff (x; y) = =X\YIT(X, y) . I'(x + X', y + y)]?

Where:

T(x5y) =T y) = V[(w:h)Zey T(Xy")]

(X +x5y+y)=1(x+x5y+y) = U[(W:h)Zemy 1(x+X"y+y")]

Normalized methods: For each of the three methods just
described, there are also normalized versions first developed
by Galton [Galton] as described by Rodgers [Rodgers88]. The
normalized methods are useful because, as mentioned
previously, they can help reduce the effects of lighting
differences between the template and the image. In each case,
the normalization coefficient is the same:

Z(%; ) =VZey T ¥)° NZey X+ X5y +Y)
The values for method that give the normalized computations
are listed:

e CV_TM_SQDIFF_NORMED

Rsq_diff_normed(x; y) = Rsq_diff (x;y) / Z(x;y)

e CV_TM_CCORR_NORMED
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Rccorr_normed(x; y) = Recorr(x;y) / Z(x;y)
e CV_TM_CCOEFF_NORMED
Rccoeff_normed(x; y) = Rccoeff (x;y) / Z(x;y)

As usual, we obtain more accurate matches (at the cost of
more computations) as we move from simpler measures
(square difference) to the more sophisticated ones (correlation
coefficient): In outdoor imagery especially, it’s almost always
better to use one of the normalized methods. Among those,
correlation coefficient gives the most clearly delineated match
but, as expected, at a greater computational cost. For a specific
application, such as automatic parts inspection or tracking
features in a video, you should try all the methods and find the
speed and accuracy trade-off that best serves your needs.

IV. SYSTEM IMPLEMANTATION

Its best to do some test trials of all these settings and then
choose the one that best trades off accuracy for speed in your
application. We use the CV_MINMAX flag when normalizing;
this tells the function to shift and scale the floating-point
images so that all returned values are between 0 and 1. Shows
the results of sweeping the face template over the source image
using each of cvMatchTemplate()s available matching
methods.

Fig. 8. Source image

and a template image:

.

Fig. 9. Template image

Generate the following result matrices (First row are the
standard methods SQDIFF, CCORR and CCOEFF, second
row are the same methods in its normalized version). In the
first column, the darkest is the better match, for the other two
columns, the brighter a location, the higher the match.
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Fig. 10. SQDIFF, CCORR and CCOEFF

Fig. 11. Normalized version of SQDIFF, CCORR and CCOEFF

The right match is shown below (black rectangle around the
face of the guy at the right). Notice that CCOEFF gave
erroneous best matches, however its normalized version did it
right, this may be due to the fact that only considering the
"highest match" and not the other possible high matches.

Fig. 12. Best matched result.

V. CONCLUSION

In sequences containing occlusions, approaches
based on Tracking-Learning-Detection outperform adaptive
tracking-by-detection methods. Attribute this to the following
reasons. Adaptive tracking-by-detection methods typically
perform a form of self-learning, meaning that the output of a
classifier is used for labelling unlabelled data. In Tracking-
Learning-Detection, unlabelled data is explored by a tracking
mechanism that is not dependent on the detector but bases its
decision on a different measure, which in our case is the
optical own. The performance of approaches based on
Tracking-Learning-Detection is further improved by the
automatic detection of tracking failures and by introducing
criteria for validity that have to be met when learning is
performed. Clearly, our approach heavily depends on the
quality of the results delivered by the recursive tracker.
Principally, the quality of the results can be improved in two
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ways. First, the timespan during which the tracker is following
the object of interest correctly could be increased. This would
present the object detector with more true positive examples.
Second, The automatic detection of tracking failures could be
improved, which would further prevent the object detector
from drifting. A real-time implementation of the framework
has been described in detail. And an extensive set of
experiments was performed.
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