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Abstract - In this paper, the joint effect of hyperspectral and light
detection and ranging (LiDAR) data for urban land use/ land
cover (LULC) classification has been analyzed as combination of
two data sources can result in better classification as compared to
single data source. LULC classification of urban areas is a
difficult task due to high spectral and spatial variability,
especially with the use of single data source. The result of spectral
angle mapper (SAM) classification, a supervised classification
method, on hyperspectral imagery is compared with that of a
knowledge based classification (KBC) combining LiDAR and
hyperspectral data. Spectra from ASTER library was used as
reference spectra for SAM classification while for Knowledge
based classification nDSM derived from LiDAR data and indices
derived from Hyperspectral data has been used. It was found
that knowledge based classification had 7-8% more accuracy
than SAM classification. Thus, it can be concluded that
Knowledge based classification can be used as an efficient
technique in this area.

Index Terms — Knowledge-based classification,
Hyperspectral, Normalized Digital surface model (nDSM)

. INTRODUCTION

Over the time, many studies have investigated the use of
remote sensing technology in urban land-use classification.
Although, most analysis in urban areas is being done using
aerial photography as a data source. Recent advances in space
borne systems, provide alternatives to aerial photography, and
implemented the use of multispectral imagery, Hyperspectral
images as well as LIDAR derived data images.

However, use of remote sensing in accurate land use
classification has always been a difficult task. There are
several reasons for this difficulty: (i) It is difficult to classify
manmade urban structure due to their spectral heterogeneity at
small scales [1] [2] [3]. (ii) The complexity of urban areas
makes it difficult for a single remote sensing source to meet all
the requirements of precise classification [4] [5] [1]. (iii)Most
pixels in urban areas appear to be mixed at low spatial
resolution which prevents accurate land use classification [6].

The development of hyperspectral sensors has improved
the accuracy of discrimination between similar land use
classes as they provide hundreds of narrow continuous
spectral bands from visible to shortwave infrared parts of

WWW.Asianssr. org

electromagnetic spectrum [7]. Due to its advantages
hyperspectral remote sensing has been increasingly used in
various applications including land use classification [8].
However, due to spectral complexity in urban areas, even
hyperspectral images alone are not enough for classification
[9] [10]; accurate classification of urban areas requires multi
source remote sensing images.

Unlike other remote sensing data, LIDAR has the
advantage of providing a third dimension of height which can
be used to separate classes of different heights such as
buildings and roads in urban areas [11] [12]. The elevation
information of the LIDAR data is very helpful in separating
similar spectral signatures when it is used in combination with
hyperspectral data [11]. Debes, et al., 2013 [28] investigated
how the fusion of hyperspectral and LiDAR data provides
improvements over traditional automated methods such as
feature extraction and supervised pixel based classification.
Huang, et al., 2008 [30] performed a traditional pixel level
classification using multispectral and LidAR data and to
further improve the accuracy they proposed a knowledge
based classification system that included a rule based scheme
and a knowledge based correction.

In this study we evaluate improvements in classification
by integrating airborne Hyperspectral (AVIRIS data) and
LiDAR data for classifying different urban land features. The
main objectives of this study are to explore: (i) The
performance of combined LiDAR and Hyperspectral data for
urban land-use classification, especially the contribution of
LiDAR height information for land-use classification in the
areas of similar spectral signature (ii) The efficiency of
knowledge based classification by specifying a set of rules for
establishing a decision based system by defining an integrative
decision tree including three dimensional information data
bases and two spectral indices. The goal is to derive an
efficient classified image using both the spectral information
of Hyperspectral data and the spatial information of LiDAR
data.
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1. STUDY AREA AND DATA SETS

A. Study site

The study area selected is a south central part of the
city of San Diego (Latitude 320 41°, Longitude -1170 6°) in
the state of California, USA shown in figure 1. The region
lies on the coast of the Pacific Ocean in Southern California,
on an average elevation of 25m above the mean sea level with
an area of about 4.2 km?.

Land use classification in this particular area is
challenging because of the following issues: (i) spectral
similarity between roads and highway leads to
misclassification (ii) the mixed pixels [6] (iii) spectral
similarity between rooftops and roads (iv) most buildings are
surrounded by trees which leads to difficulty in identifying
building footprints.

B. Data

1) LiDAR data: Lidar data has been downloaded from
Data/Open Topography where it is freely available, URL:
http://opentopo.sdsc.edu/lidar. This airborne data was acquired
during the survey done between 03/16/2005 - 05/12/2005 by
Merrick, Inc. The total survey area was around 1,190.00 km?
with the point density of 1.41 points/m?. The Horizontal and
Vertical Coordinates reference is NAD83 California State
Plane Zone VI FIPS 0406 Feet [EPSG: 2875] and NGVD29
Feet respectively.

2) Hyperspectral data: The hyperspectral data has been
downloaded from AVIRIS data portal where it is freely
available, URL: http://aviris.jpl.nasa.gov/alt_locator/. The
airborne hyperspectral imagery was acquired on 16th
November 2011 at the time 16:19:00 UTC. The hyperspectral
sensor used was AVIRIS and the average altitude of the sensor
above the ground was 20km. The imagery consisted of 224
bands in 365.93-2496.23 nm region. The spatial and spectral
resolutions were 4.5m and 9.92nm, respectively. The spatial
reference is UTM, Zone 11 North.

. METHODOLOGY

A. Data Preprocessing

Preprocessing of Hyperspectral data was done to
convert radiance data into reflectance data by applying sensor
and atmospheric corrections. Sensor corrections include bad
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band removal i.e. all the noisy and zero value bands using
ENVI software version 5.0. AVIRIS hyperspectral data
consists of 224 bands out of which 44 bands were noisy.
Hence after removal of bad bands the data only consisted of
180 bands. Table 1 shows all the bad bands.

Table.1 Bands with zero values or noise

Bad Bands

1,2, 3,4,5,107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174,
175,176, 221, 222, 223, 224

After the removal of bad bands, atmospheric correction
was performed in ENVI atmospheric correction module i.e.
Fast Line-of-sight Atmospheric Analysis of Hypercube
(FLAASH) based on MODTRAN. FLAASH correction is
done to remove all the adverse effects of atmosphere and to
determine true surface reflectance values [13]. There are
certain area specific and data specific parameters which needs
to be mentioned for applying atmospheric correction to a
dataset. The input parameters used by the FLAASH

atmospheric correction module are listed in Table 2.
Table.2 Input parameters used for the atmospheric correction of
hyperspectral dataset

FLAASH parameters Value given for
Hyperspectral data

Scene Centre Latitude 32°41°

Scene Centre longitude -117°6°

Scaling Factor 300 for band 6-110 & 600 for
rest

Pixel Size 45m

Sensor Type Hyperspectral-AVIRIS

Flight Date 16" November 2011

Average Flight Time 19:16:00

Sensor Altitude 20 km

Ground Elevation 0.249

Atmospheric Model U.S. Standard
Water Retrieval No

Aerosol Model Urban
Aerosol Retrieval None
Initial visibility 40 km
l \ ;r‘l — f{\ '{;‘.L) ig;"lb
= & =3 = & b
| {( ‘f‘:, T/- l\, T,f e \*<ji -
l l\ o ’_‘\ﬁ) )/\-'\L \ o _,i 2 P
N 2 e
R o &S
ID: 182



Asian Journal of Convergence in Technology

ISSIN No.:2350-1146, 1. F-2.71

@

Yolume 111, Issue 11T

(b)

Fig. 1. (a) Study Area (google earth) (b) Location of Study Area

B. Indices calculation & nDSM generation

Two indices were calculated in this study namely
Normalized Difference Vegetation Index (NDVI) and
Normalized Differential Built-up Index (NDBI). NDVI is a
numerical indicator that uses the visible and near-infrared
bands of the electromagnetic spectrum, and is adopted to
analyze remote sensing measurements and assess whether the
target being observed contains live green vegetation or not.
NDVI was calculated from equation 1.

NDVI = NIR—Red (l)
NIR+Red
Where NIR is the reflectance in Near Infra-Red Band and Red
is the reflectance in Red band of the spectrum. NDBI is the
numerical indicator that uses the short wave infra-red and near
infra-red bands of electromagnetic spectrum for mapping
built-up areas. NDBI is calculated from equation 2.

NDBI = SWIR—NIR (2)

SWIR+NIR
Where NIR is the reflectance in Near Infra-Red Band and

SWIR is the reflectance in Short wave infra-red band of the
spectrum. Digital Surface Model (DSM) and Digital Elevation
Model (DEM) generated using ENVI 5.0 software are of the
resolution of 1 m. nDSM is generated by subtracting DEM
from DSM by equation 3.

nDSM = DSM — DEM ©)
The generated nDSM was then co-projected with the AVIRIS
reflectance image using ERDAS 2014 software. The projected
nDSM is of 4.5 m resolution as that of AVIRIS image.

C. Classification

1) Supervised classification: For the classification of
Hyperspectral data a supervised classification technique
Spectral Angel Mapper (SAM) has been used. SAM algorithm
is based on an assumption that every single pixel of remote
sensing image represents one certain ground cover material,
thus can be uniquely assigned to only one ground cover class.
The SAM algorithm determines the spectral similarity
between two spectra by calculating the angle between the two,
treating them as vectors with dimensionality equal to the
number of bands [14]. In this algorithm the spectral similarity
has been determined using equation 4

nb
1 Yi=y tiTi

b b
Z?:]_ tiz Z?:lriz

a = Ccos~

(4)
Herein, nb is the number of bands in the image; t is pixel
spectrum; r in reference spectrum and « is spectral angle.
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The reference spectra for SAM classification was picked
from ASTER spectral library. The ASTER spectral library
includes data from three other spectral libraries: the Johns
Hopkins University (JHU) Spectral Library the Jet Propulsion
Laboratory (JPL) Spectral Library, and the United States
Geological Survey (USGS - Reston) Spectral Library [15].
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Fig. 2. Flowchart of methodology

For the calculation of spectral separability of these 8
classes spectral Analyst in ENVI 5.0 was used according to
which variable angles for different classes in SAM
classification were decided. The spectra from ASTER spectral
library were also resampled to match with the 180 bands of
AVIRIS data. Angles given to different classes for performing
SAM classification is shown in Table 3.

Table 3. Angles given for SAM classification

Material Angle used for SAM classification
Asphalt concrete road 0.2
Construction concrete 0.22
Paving asphalt road 0.25
Reddish asphalt shingle 0.2
Slate stone shingle 0.3
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Vegetation Grass 0.35
Vegetation Tree 0.18
Gravelly sandy loam 0.22

2) Knowledge based classification: For the integration
of Hyperspectral and LIDAR data, a knowledge based
classification (KBC) was carried out. The variables used
in Knowledge based classification are NDVI, NDBI

Height> 1.5

| Urbani Buildings

NDBI>-0.5

Height<0.5
NDBI > -0.2

Height>3

NDVI=>0.5
Height<2.5

l Vegetation2 H

Fig. 3. Decision tree for knowledge based classification
which were derived from AVIRIS reflectance image and
nDSM which has been derived from the point cloud LiDAR
data. Knowledge based classification was done in ERDAS
imagine 2014 software after doing the co-registration of all
three. The set of hypothesis, rules and variables used is shown
in Figure 3.

I Urban 2 Roads

—]

Trees

I Vegetation1 H

Open Land

D. Accuracy Assessment

The accuracy assessment of the thematic maps was based
on the error matrix, which was calculated from ERDAS
imagine 2014 [16].For this we compared certain randomly
distributed pixels in the classified image to the reference
pixels. There were 51 validation pixels taken, for which the
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classes were found out from the Hyperspectral image. As a
result, overall accuracy (OA), producer’s accuracy (PA) and
kappa coefficient (k) were calculated. The error matrix is an n
* n matrix where rows representing classification samples and
the columns representing the reference samples [17]. The
kappa coefficient can be defined as a multivariable statistical
method which is used for assessing classification accuracy and
can be defined as in equation (5) [18].

q q
MY ey Mk~ Ljeq Mk+N4k

K=
n2 3l ngingg (5)

Herein, « is the kappa coefficient; q is the number of rows
in the error matrix; ny is the observation in row k and column
k; and ny. and n,, are the sums of all observations of row k
and column Kk [18]. [19]

Il.  RESULTS AND DISCUSSIONS

A. Atmospheric Correction

FLAASH Atmospheric correction model is used for the
correction of AVIRIS radiometric data. Results of the spectral
profiles before and after atmospheric correction of the datasets
were compared by observing spectra of building, road and
vegetation and they have shown significant improvement in
the spectral profile after atmospheric correction. The results
obtained for the three features before and after atmospheric
correction are explained in Figure 4 in terms of their spectral
profiles.

It can be seen in the spectral signatures that all the water
absorption bands have been removed from the spectral
signatures. Spectra of grass shows reflectance at green band
and very high reflectance at NIR band but not so obvious
absorption in red band may be because of some processing
errors. The building spectra which is most probably made of
concrete has spectral signature very close to concrete. Almost
all the spectra after atmospheric correction have higher
reflectance than before.
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Fig. 4. (a) Vegetation, (b) Road and (c) Building spectra before and after atmospheric correction

B. Spectral Angle Mapper classification

Spectral Angle Mapper Classification approach is used
for the Classification of Hyperspectral Data. The classes used
were 8 with spectra derived from ASTER spectral library. As
the main purpose of our study was to extract buildings, roads,
trees and open land, so we merged these classes into 4 broader
classes. The classification result after the merging of classes is
shown in figure 5.
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Unclassified
Buildings
Roads

Trees

. o e
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e Open Land
Fig. 5. SAM classified image

In this classified image it can be seen that at some points,
buildings and roads are misclassified because of spectral
similarity between the rooftop material and road material e.g.
paving asphalt and reddish asphalt shingle. Even in the
vegetation at some points are misclassified due to huge
spectral similarity between grass and tree spectra. The overall
accuracy of this SAM classified image was found to be
60.78%. Accuracy assessment of the classification results is
shown in Table 4.

C. Normalized Digital surface Model

As stated earlier in the methodology nDSM is generated
by subtracting DEM from DSM which were earlier derived
from point cloud LiDAR data. The main purpose of
calculation of nDSM is to get the height of manmade
(buildings and roads) and natural (trees and grass) features
above the surface of earth.

D. Normalized Differential Vegetation Index

NDVI was calculated from the hyperspectral data to get
the greenness of study area. In the study area NDVI ranges
from .4 to 1 for grass and .5 to 1 for tree. And for buildings
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and roads it is lesser than 0.2 but we have not taken NDVI into
consideration for knowledge based classification.

E. Normalized Differential Built-up Index

NDBI is used to calculate density of Roads and buildings
in the study area. It was found that for roads NDBI ranges

from -0.2 to 1 while for the buildings it ranges from -0.5 to 1.
Table 4. Accuracy of individual classes

Classes Accuracy Kappa Producer’s
(%) Coefficient ~ Accuracy (%)
SAM KBC SAM KBC SAM KBC
Unclassified - - 0.0000 0.0000 - -
Buildings ~ 33.33 73.33 0.2924 0.5879 65 61.11
Roads 629 100 09273 1.000 8333 80
Trees 100 84.62 10000 0.7879 2727 78.57
Grass 50 33.33 0.4446 0.2766 69.05 25

F. Knowledge based classification

For knowledge based classification the set of hypothesis,
rules and variables are previously shown in methodology.
Classified image according to those rule is shown in Figure 6.
The accuracy of 68.63% was achieved for this classification.
Accuracy assessment of the classification results is shown in
Table 4.

Unclassified
Buildings
Roads

Fig. 6. Knowledge based classifiéa-image

Trees

Open Land
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G. Comparative analysis of accuracy

The accuracy achieved for knowledge based classified image
was around 8% more than the SAM classified image which
shows that the classification result of knowledge based
classification was more accurate as compared to SAM
classification. Some of the areas were chosen for comparison

of results and the results are shown in figure 7.

In figure 7 (a), the SAM classified image the ‘D’ road is
not classified properly while in the knowledge based classified
image the classification is more precise. The ‘D’ shape of road
is clearly seen in the knowledge based classified image. In
figure 7 (b), the subset which is a building made of construction

Fig. 7. Comparison between SAM and KBC classification

In SAM classified image most of the building is either
unclassified or covered with paving asphalt road with a very
little part of construction concrete. But as we analyze the
knowledge based classified image the building boundary is
clearly visible. In figure 7 (c), we can clearly visualize the
increase in accuracy of knowledge based classified image in
which the building boundary is clearly visible which is not at
all visible in the SAM classified image.

I1l.  CONCLUSION

The results of SAM experiments indicate that
classification accuracy is not satisfactory in standard cases
involving only Hyperspectral imagery. However, the
incorporation of LiDAR data, especially NDSMs, significantly
improves accuracy. Thus, urban classification is highly
dependent on LIiDAR height rather than on multispectral or
Hyperspectral imagery.

Knowledge-based classification rules improved urban
classification performance. Three factors may explain the
success of this method. First, the four height-level
classification framework not only reduces the number of
categories at each level but also overcomes the ambiguity
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between high-height and low-height objects. In addition, the
KBC successfully removes shadows between buildings from
the preliminary classified image. The KBC experiment results
indicate that the overall accuracy of the KBC is 8 percent
better than that of the SAM approach. Moreover, the visual
details in the KBC are superior to those of the SAM. .

The KBC provides the procedures and mechanisms to
formalize knowledge into classification rules. The advantage
of the KBC is that its procedure can be repeated by designing
a stand-alone program or applying the rules to commercial
classification software with “expert system” functionality,
such as ERDAS Imagine®. In the future, more subcategories
can be extended to the KBCS according to user requirements.
More ground-feature discriminative models and inference
rules can be explored if more subcategories are needed for
enhanced accuracy results.
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