

FPGA Based Design Technique for Image Processing

Sagar N. Shinde

Sharadchandra Pawar College of Engineering, Otur,
Pune, India
sagarshinde989056@gmail.com

Prof. Dr. G. U. Kharat

Sharadchandra Pawar College of Engineering, Otur,
Pune, India
gukharat@gmail.com

Abstract—VHDL is Hardware Descriptive Language. It is having many elements that can be used to explain the behavior or structure of digital system. It can be used to model a digital system. VHDL language gives support for modeling the system as well as it supports top-down and bottom-up design methodologies. VHDL is a large and verbose language with many complex constructs that have complex semantic meanings and it is possible to quickly understand a subset of VHDL which is both simple and easy to use. Here the system is to be designed in such a way that it will accept the image from PC serially and the image is enhanced using the technique as specified by user and enhanced image can be displayed on monitor. Here the device used for implementation is Xilinx FPGA XS3s400.

Keywords—Digital image, Negative Transform, Threshold Transform, VGA, FPGA, MATLAB.

I. INTRODUCTION

Nowadays Image Enhancement is very much useful in many applications. This is very powerful technology and can be used in medical as well as in other fields on large scale. The primary principle of this technique is to improve the appearance or quality of image. Within this process, result is more specific than the original image. Any blur image can give more information after use of this technique. Digital camera is best example for enhancement. Enhancement is nothing but improve the appearance of picture. Visualization should be clear after the enhancement process. MATLAB is good tool for implementation of image enhancement technology. There are many techniques which are developed by MATLAB, But in this paper VLSI Technology is used i.e. Very Large Scale Integration Technology. It uses VHDL language for implementation. It has many advantages than MATLAB.

FPGA [Field Programmable Gate Array] is used in verification of conceptual design as well as in electronics system. The internal structure of FPGA is very much useful to understand VLSI design. It has flip flop as a sequential blocks, memory also combinational logic unit.

The aim of this project is to develop a system with the help of FPGA board using VHDL language and target spatial domain technique of image enhancement for Real Time system

II. SYSTEM OVERVIEW

As shown in block diagram of Fig 1, PC is the source of image which will send image to digital hardware (FPGA). The image is sent to digital hardware using Transport utility of digilent board. The gray values of image received from PC are processed using digital hardware designed on FPGA.

Digital hardware consists of digital design for various spatial domain image enhancement techniques such as negative image, thresholding, contrast stretching, etc. which are discussed later. The gray values are modified as per selected image enhancement technique. The processed image is then given to VGA controller. VGA controller will display the enhanced image on monitor .VGA controllers are designed in FPGA architecture itself.

For this design we are using digilent board of FPGA. It does not require external power supply for its operation. It gets power from USB itself which is used for interfacing with PC.

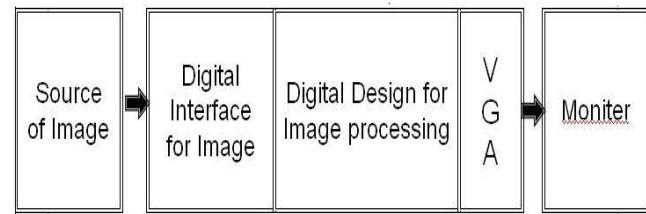


Fig 1. Block Diagram of system

III. OVERVIEW OF DIGITAL IMAGE PROCESSING

Pixel is very important factor from image. In this project processing image is Digital Image. This image is nothing but 2 dimensional representation of pixels with finite digital value.

Digital values are also called as picture element or pixels. Digital image has specific number of rows and columns. Combination of rows and columns give finite number of pixels with digital value. Pixel is smallest individual part of digital image and that are used to hold color at specific point. Example of digital image is as shown in fig 2.

$$s=T(r)$$

Here in image there are maximum $L-1$ number of gray levels are possible.

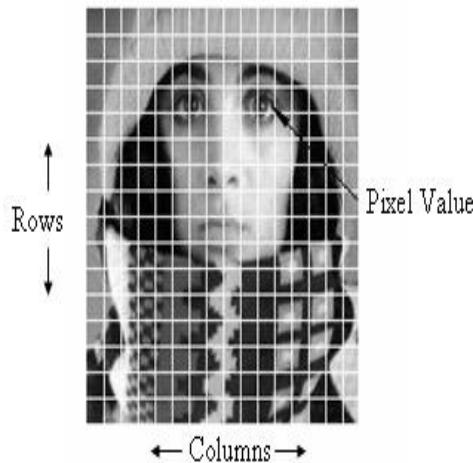


Fig 2. Digital Image

Image is 2 dimensional function i.e. $f(x,y)$, here x and y are coordinates of spatial plane. F is amplitude of coordinates pair (x,y) is known as intensity or gray levels of image at that specific point.

III.1 IMAGE ENHANCEMENT

Image Enhancement is the process to improve the appearance of original image. Output image at the result is with more information than the original. Better Image is the output from blur image that is the basic function of image enhancement. Image Enhancement technology broadly divided into 2 techniques 1) Spatial Domain Technique 2) Frequency Domain Technique. Spatial Domain Technique is very much suitable for image processing. It deals with pixels at a time that means it operates on pixels. Frequency Domain Technique deals with Fourier transform of image and it is little bit complicated because of calculation. Spatial domain technique operates on pixels and as they usually operate on single pixel at a time, it is often referred as a point processing. It operates on negative transformation, thresholding, gray level slicing etc.

F is original image and G is result image. Pixel value of (x,y) can be mathematical expressed as

$$g(x,y)=T\{f(x,y)\}$$

here T is operator of F .

If s is gray level of G and r is gray level of F , they are given as

IV. NEGATIVE TRANSFORMATION

The negative of image is obtained by using transformation function $s=T(r)$, i.e

$$S=L-1-r$$

The idea here is to reverse the order from black to white so that intensity of the output image decreases as intensity of input image increases and vice versa. This transformation will appear as shown in Fig.3(a).

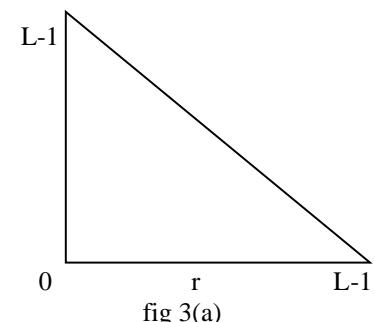


fig 3(a)

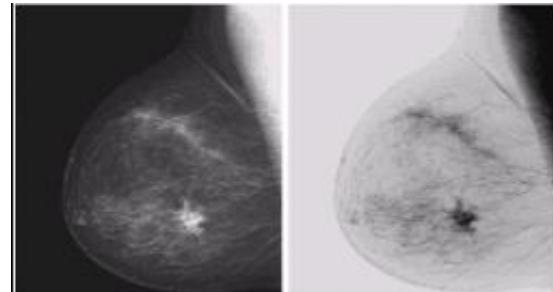
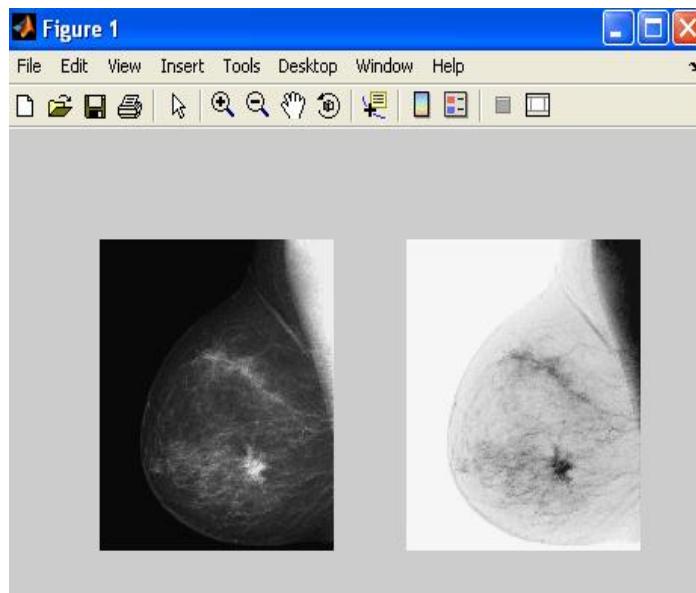
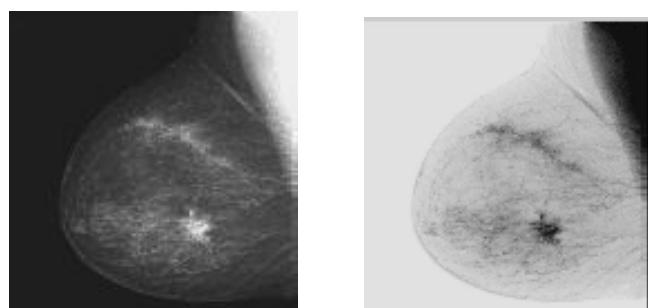


Fig 3(b)

fig 3(c)


fig 3. Negative Transformation

This technique is very useful in some of the medical applications such as mammogram shown above in Fig.3.(b) in which cancer cells are not clearly visible in original image but when negative of this image is taken then cancer cells can be clearly observed as shown in Fig.3. (c).


VI. RESULT

Results of implementation in Mat Lab are as follows.
VHDL implementation would be better than the Mat Lab.

(a) Negative Transformation

b) Results of implementation using VHDL.

Input Image

Output Image

c) Result On Monitor

Input Image

Output Image

VII. ACKNOWLEDGE

This paper has been conducted under the guidance of our author Prof. Dr. G. U. Kharat and Prof. C. K. Jha. Also authors would like to thank the department of E&TC, Sharadchandra Pawar College of Engineering, Otur, Pune.

REFERENCES

- 1) Multimedia Applications, IEEE, VOL. 23, NO. 9, SEPTEMBER 2013
- 2) Yiran Li "FPGA Implementation for Image Processing Algorithms", EEL 6562 Course Project Report, December 2011
- 3) Anthony E. Nelson, "Implementation of image processing algorithms on FPGA hardware", Graduate school of Vanderbilt University, May 2010

Asian Journal of Convergence in Technology

Volume1, Issue 1

- 4) Jinshan Tang, Senior Member, IEEE, Xiaoming Liu, Member, IEEE, and Qingling Sun A Direct Image Contrast Enhancement Algorithm in the Wavelet Domain for Screening Mammograms, VOL. 3, NO. 1, FEBRUARY 2009
- 5) Volker J. Schmid, Brandon Whitcher, Anwar R. Padhani, and Guang-Zhong Yang*, Quantitative Analysis of Dynamic Contrast-Enhanced
- 6) MR Images Based on Bayesian P-Splines, VOL. 28, NO. 6, JUNE 2009
- 7) Peter A Ruetz and Robert W Brodersen, " *Architectures and design techniques for real time image processing IC's* " ,fellow IEEE,Electronics research library, University of California,December 2008
- 8) R.C.Gonzalez and R.E.Woods, " *Digital Image Processing* " Reading MA: Addison – wesely Publication, 2006
- 9) John Wiseman," *A Hardware architecture for efficient implementation of real-time weighted median filter*,March 2000
- 10) Shih-Lun Chen,VLSI Implementation of an Adaptive.