

Maximum Power Point Tracking for single phase photovoltaic system using fuzzy logic

Mrs.P.S.Gotekar¹, Dr.S.P.Muley²
 AsstProf, Professor,
 Electrical Department
 Priyadarshini College of Engineering
 Nagpur, India
 p_somkuwar@yahoo.com

Dr.D.P.Kothari³
 Fellow (IEEE),
 Dean (Research),J.D College of Engineering,
 Nagpur,
 India

Abstract—A modeling technique for maximum power point tracking using fuzzy logic of PV system is presented in this paper. The main focus of this paper is to simplify modeling of single phase PV system. Then a fuzzy logic based maximum power point has been implemented. This will help to track power efficiently.

Keywords—Fuzzy Logic, MPPT, PV model, MATLAB/SIMULINK.

I. INTRODUCTION

In India the application of solar energy is increasing rapidly. In 2017 the solar grid had a total output of 16.20 GW. India has increased its solar output to 12,289 MW on 31 March 2017[1-2]. Around 3 GW of solar energy was added in 2016 and 5.525 GW in 2017. This is the highest solar capacity added of any year. This is due to the reason that average price of solar electricity dropped to 18% which is below the average price of its thermal power counterpart[3-5].

The main component of any solar system is photovoltaic module. The characteristic I-V equation, is a non-linear equation with number of parameters classified as follows: those provided by manufacturer, those known as constants and the ones which must be calculated. Sometimes, researchers develop simple methods. So the unknown parameters can't be calculated. They are assumed to be constant. For example, in [6] the series resistance R_s was included, but not the parallel resistance. In some literature these two have been identified more accurately.

The main objective of this paper is to target the PV module in a complex system. In a PV cell apart from series and parallel resistance, ideality factor, photocurrent, diode current have also been considered. A PV module comprises of several PV cells connected in series /parallel or combination of both as per the required capacity. Aim is to obtain the maximum power more accurately, which is the close to the experimental result.

II Modelling of PV cell

A solar cell is the electronic device which converts sunlight into electricity. Combination of PV cells connected in series and parallel forms a PV module. A voltage of PV module is selected such that it is compatible with the voltage of the battery. Single diode model or a two diode model may be used to represent a PV cell. Due to simplicity single diode model has been selected in this paper.

A. Design of PV Cell

The five parameters on which the solar irradiation and cell temperature depends are I_o , R_s , R_p , I_{ph} , and ideality factor (refer Table 1).

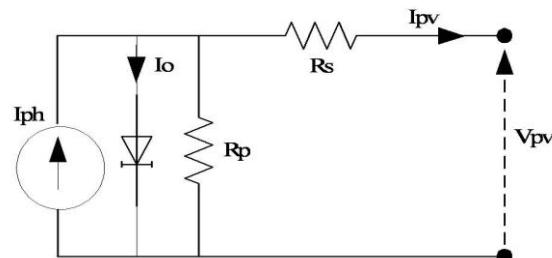


Fig. 1. Single diode model of PV cell.

Figure 1 shows practical model of PV cell. This model is also called as five parameter model (I_o , ideality factor, R_s , R_p , I_{ph}) and has following properties:

* R_s is introduced in series to consider voltage drop and internal losses due to the flow of current.

* R_p is introduced to consider leakage current to ground when the diode is reverse biased.

B: Mathematical equations

To predict the behavior of the solar cell under varying atmospheric conditions mathematical modeling is required. The key factor that affects the accuracy of the simulation is the

accurate representation of nonlinear characteristics of the PV system modeling .

$$I_{pv} = N_p * I_{ph} - N_p * I_o * \left[\exp\left(\frac{q * V_{pv} + I_{pv} * R_s}{N_s * A * K * T}\right) - 1 \right] \quad (1)$$

PV saturation current is given by,

$$I_o = I_{rs} * \left[\frac{T}{T_r} \right]^3 \exp \left[q * \frac{E_g}{A_k \left[\frac{1}{T_r} - \frac{1}{T} \right]} \right] \quad (2)$$

Reverse saturation current is given by,

$$I_{rs} = \frac{I_{scr}}{\left[\exp\left(\frac{V_{oc}}{N_s K A T}\right) - 1 \right]} \quad (3)$$

PV photocurrent I_{ph} is,

$$I_{ph} = [I_{scr} + K_i(T - T_r)] * \frac{S}{1000} \quad (4)$$

A constant introduced is given by,

$$C_o = N_s K A T \quad (5)$$

C. MATLAB/Simulink Implementation of PV module.

To implement the equations (1-5), different matlab functions have been used. Different blocks represent different mathematical equations for I_{ph} , I_{pv} , I_o and C_o . Input parameters chosen are N_p , N_s , temperature, while output parameters are output power of PV module, current and voltage of PV module. Figure 2 represents matlab simulink model of PV module.

III. MPPT System

As the direction of the Sun changes there is change in insolation level therefore the output power of PV module also changes. The peak value of the product of voltage and current represents the maximum power point P_{max} of the solar module. The solar module should always be operated in this region so as to extract the maximum power for a given input conditions. For this purpose various power point

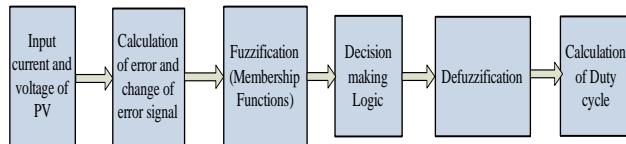


Fig 3. Block diagram of fuzzy logic controller.

algorithms are used. It is desirable that PV module operates near maximum power point. Many MPPT algorithms had been proposed in the past. Most commonly used algorithms are Perturb and Observe, Incremental conductance method, neural network and fuzzy logic method.

The input parameters are chosen as : input current and voltage of PV module. The output will be the duty cycle.

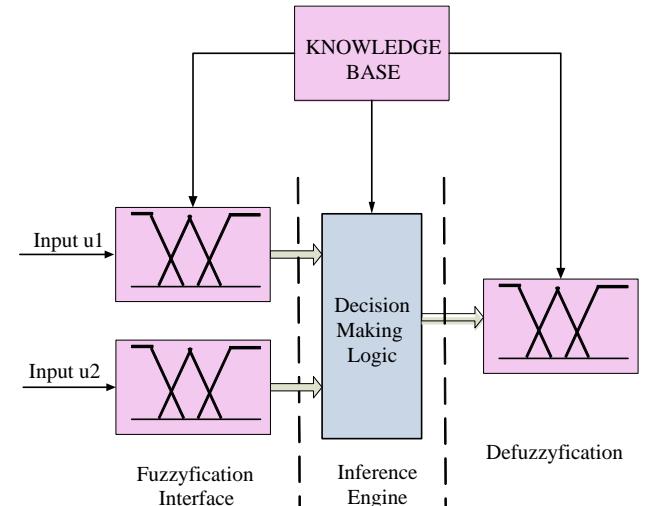


Fig 4. Fuzzy Logic algorithm

From fig 4 the basic concept of fuzzy algorithm is clear. The equations associated with calculation of error and change of error have been given below.

Fuzzification and Decision Making logic:

$$E(k) = \frac{\Delta P}{\Delta I} \quad (6)$$

$$CE(k) = E(k) - E(k-1) \quad (7)$$

$$\Delta I = I(k) - I(k-1) \quad (8)$$

$$\Delta V = V(k) - V(k-1) \quad (9)$$

$$\Delta P = P(k) - P(k-1) \quad (10)$$

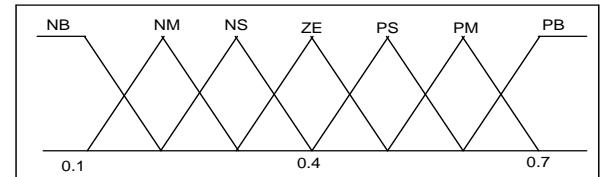


Figure 6: Membership function for error

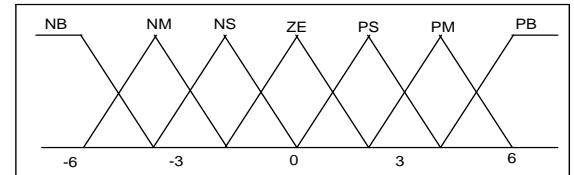


Figure 7 : Membership function for change of error

For the input variables, error and change of error and duty cycle, triangular membership functions have been chosen..

Rules for MPPT for the fuzzy logic controller have different subsets. In all forty nine rules are written to operate the fuzzy logic controller. For the improvement in accuracy of the system forty nine rules are used.

TABLE I: NOMENCLATURE

Design of Boost Converter

The input to the boost converter is through photovoltaic panel. Fig.8 indicates basic circuit of boost converter. V_{pv} is input voltage, L is inductor, D is diode and load resistance is R . The equation to calculate duty cycle is given by ,

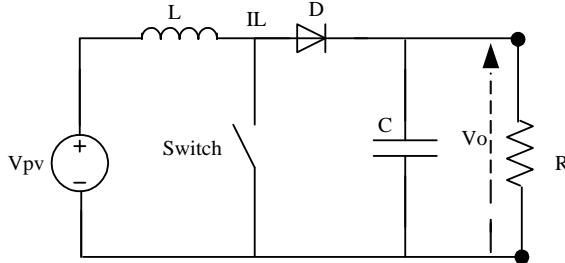
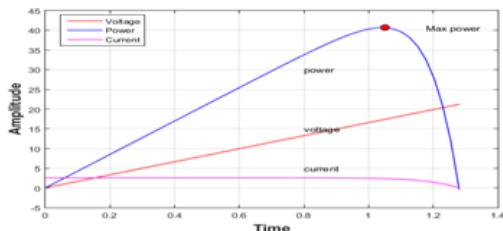
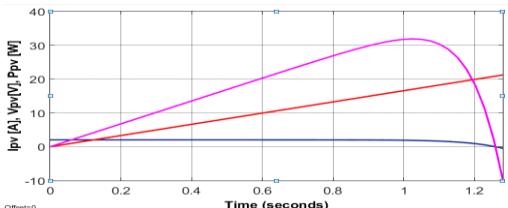



Fig 8. Basic circuit of Boost Converter


$$M = V_o/V_{pv} \quad (11)$$

Simulation and Results

The complete system includes collecting data pertaining to irradiation. Irradiation between 200W/m^2 to 1000 W/m^2 was considered. A PV module and fuzzy based MPPT to obtain maximum power output is designed. The versatile and efficient modeling technique of PV module modeling and to implement the fuzzy technique in a simple way to control the output with a fuzzy logic based MPPT system has been implemented. In all forty nine rules were designed to increase power output. The rules are indicated by table 2. The main objective here was to reduce the complexity of PV system.

Fig 9. Variations in current, voltage and power, $I_{(pv)}$, $V_{(pv)}$, $P_{(pv)}$

This paper presents a method used to optimize the energy extraction in a photovoltaic (PV) power system. The maximum power of a PV module changes with temperature, solar irradiation. To increase efficiency, PV systems use a Maximum Power Point Tracker (MPPT) to continuously extract the highest possible power and deliver it to the load. It is observed that the system completes maximum tracking point successfully. Figure 9 and 10 gives response for variation in current, voltage and power with respect to time for irradiation of 1000W/m^2 and 800 W/m^2 . With the increase in irradiance the power output increases.

Fig 10. Variations in current, voltage & power, $I_{(pv)}$, $V_{(pv)}$, $P_{(pv)}$

Sr. No	Symbols	Description
1	V_{pv}	Output voltage of PV module
2	T_r	Reference temperature
3	I_{ph}	Light generated current in a PV module
4	A	Ideality factor =1.6
5	q	Electron charge = $1.6 \times 10^{-19} \text{ C}$
6	I_{scr}	Short circuit current
7	K_i	Short circuit current temperature coefficient
8	E_g	Band gap for silicon = 1.1 eV
9	K_v	Open circuit voltage temperature coefficient
10	I_{pv}	Output current of a PV module
11	T	Module operating temperature in Kelvin
12	I_o	PV module saturation current
13	k	Boltzman constant = $1.3805 \times 10^{-23} \text{ J/K}$
14	R_s	Series resistance of PV module
15	R_p	Parallel resistance of PV module
16	S	PV module illumination (W/m^2)
17	N_s	Number of cells in series
18	N_p	Number of cells in parallel
19	V_{oc}	Open circuit voltage

TABLE II:THE FORTY NINE SET OF FUZZY RULES

E	CE						
	NB	NM	NS	ZE	S	M	B
NB	ZE	ZE	ZE	ZE	NB	NB	NB
NM	ZE	ZE	ZE	NM	NM	NM	NM
NS	NS	ZE	ZE	NS	NS	NS	NS
ZE	NM	NS	ZE	ZE	ZE	S	M
S	M	M	S	S	ZE	ZE	ZE
M	M	M	M	ZE	ZE	ZE	ZE
B	B	B	B	ZE	ZE	ZE	ZE

TABLE III:POWER OUTPUT

Sr. no	Irradiance $^2 [\text{W/m}^2]$	$I [\text{A}]$	$V [\text{V}]$	P[W] observed	P [W] calculated
1	200	0.47	14.83	7.04	6.97
2	400	0.93	16.11	15.05	14.98
3	600	1.41	16.53	23.35	23.30
4	800	1.83	16.95	31.85	31.69
5	1000	2.34	17.38	40.68	40.66

References

[1] " India to reach 20 GW of installed solar capacity by FY-18 end:report" www.bridgetoindia.com

[2] "Physical progress achievements"<http://mnre.gov.in/mission-and-vision-2/achievements/>

[3] "Renewables 2017, Global status report"http://www.ren21.net/wp-content/uploads/2017/06/GSR2017_Full-Report.pdf

[4] Hasan Mahamudul, Mekhilef Saad, and Metselaar Ibrahim Henk, "Photovoltaic System Modelling with Fuzzy Logic Based Maximum Power Point Tracking Algorithm. "Hindawi Publishing Corporation, International Journal of Photoenergy 2013.

[5] Chetan Solanki, "Solar Photovoltaics, fundamentals, technologies and application" 3rd edition, PHI Learning Pvt Ltd.

[6] Walker Geoff, " Evaluating MPPT converter topologies using MATLAB PV model", Aust. Journal of Electrical Electronics Engineering, 2001.

[7] Benssammoud M.T, Boudghene S A, " Proposed methods to increase efficiency of PV system", Acta polytechnic

[8] Lijun Qin,Xiao Lu, "Matlab/Simulink Based Research on Maximum Power Point Tracking of Photovoltaic Generation"2012 International Conference on Applied Physics and Industrial Engineering,ELSEVIER,Physics Procedia 24 (2012) 10 – 18.

[9] Habbati Bellia, Ramdani Youcef, Moulay Fatima, "A detailed modelling of photovoltaic module using MATLAB" NRIAG Journal of Astronomy and Geophysics (2014) 3, 53–61

[10] Ali Algaddafi, Saud A. Altuwajiri, Oday A. Ahmed, and Ibrahim Daho,"An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters" Hindawi, The Scientific World Journal, Volume 2017,

[11] R.Mahalaxmi, Kumar A Ashwin, Arawind Kumar"Design of Fuzzy Logic based maximum Power Point Tracking controller for Solar Array for cloudy weather conditions" IEEE Power and Energy Systems Conference: Towards Sustainable Energy, 2014.

[12] P.S.Gotekar, S.P.Muley, D.P.Kothari, B.S.Umre"Comparison of Full Bridge Bipolar, H5, H6 and HERIC Inverter for Single Phase Photovoltaic Systems – A Review" IEEE INDICON 2015

[13] M.H.Rashid, Power Electronics Circuits, Devices and Applications,3Edition,2003.

[14] Aniruddha V. Jadhav, P. V. Kapoor, "Reduction of common mode voltage using multilevel inverter " 2016 International Conference on Energy efficient Technologies for Sustainability. pgs.112-115.

[15] P.S.Gotekar, S.P.Muley,D.P.Kothari, " Fuzzy Logic based Maximum Power Point Tracking for Photovoltaic system"INternational Journal of Computer Technologyand Applications

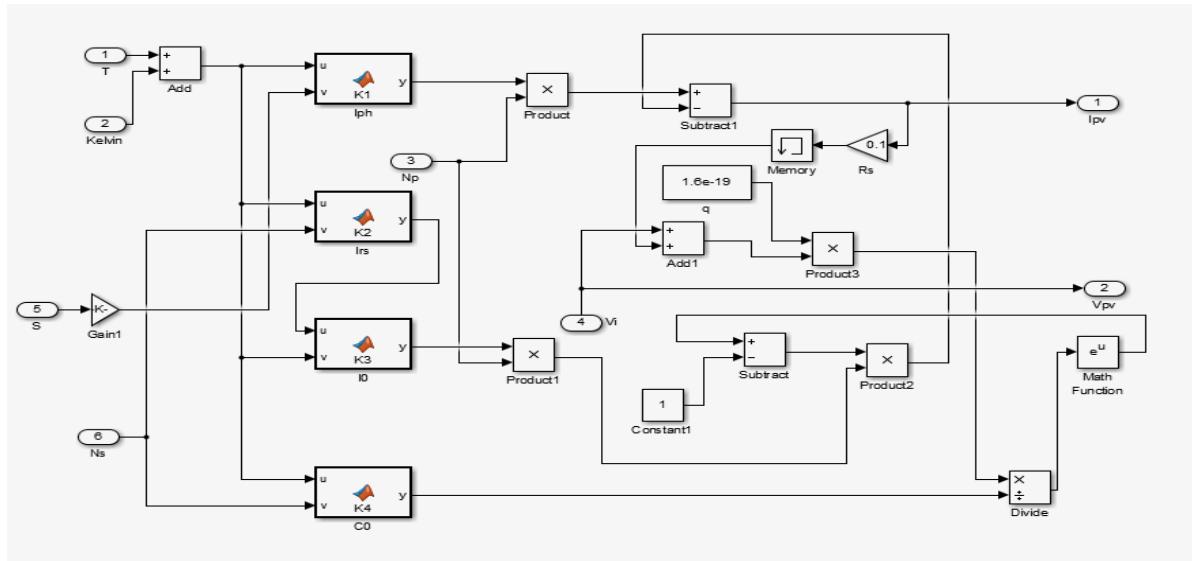
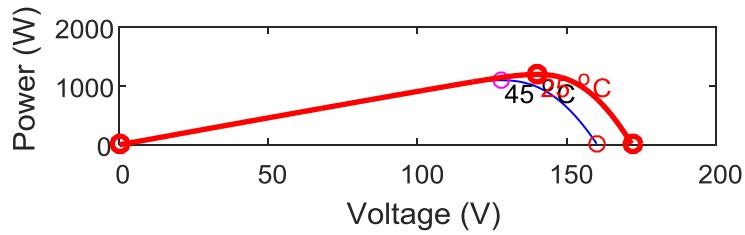
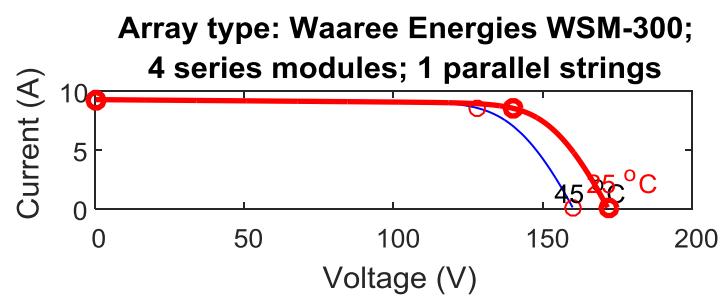
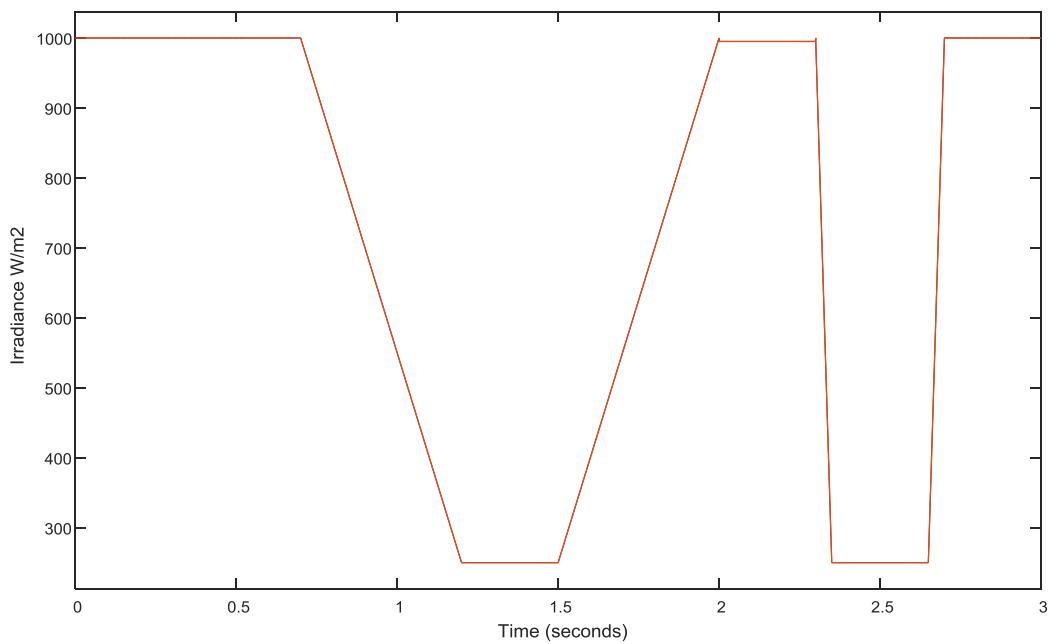





Fig.2. Simulink model of PV module

