
Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

Three-Dimensional Spatial Data Types
1
Sandeep D Bansode,

2
Mrunal D Bhosale

1
Lecturer , MCA dept., Ratnagiri

2
Developer, Savy Software sol., Pune

1
sandeep.bansode86@gmail.com,

2
mrunalbhosale1@gmail.com

1
9975718997,

2
9921044179

Abstract:-Database management system have significantly

changed in the last several years from a system dealing with

management of administrative data they have involved to a

spatial DBMS providing spatial data types, spatial indexing

and extended spatial functionality. Spatial database system

as database system that offers spatial data types in its model

and query language and supports spatial applications.

Spatial database is mainly deal with 2-D dimensionaldata

(geometric data). This is sufficient for many spatial

application. But on the other hand our world is 3-D and a

number of possible application can be identified that would

be a greatly benefit from a treatment of 3-D data. Although

the provided functionality is limited to the second dimension,

various options exist for management of three-dimensional

data.

 The idea of this topics (Research paper) is 3-D

geometric information of spatial database. Our research has

led so far to a called abstract model that identifies the

essential 3-D spatial data-types.

I. INTRODUCTION

DBMS has traditionally used to handle large

volume of data and to ensure the logical consistency and

integrity of data, which also have major requirements in

handling spatial data.

What is spatial database system?

1) A spatial dB system is a database system

2) It offers spatial data types in its data model and

query language.

Evolving to Spatial DBMS: [3]

 DBMS have been traditionally used to handle

large volumes of data and to ensure the logical

consistency and integrity of data, which also have be-

come major requirements in handling spatial data. For

years, spatial data used to be organized in dual

architectures consisting of separated data management for

administrative data in a Relational DBMS (RDBMS) and

spatial data in a GIS. This is to say spatial data has been

managed in single files using proprietary formats. This

approach couldeasily result in inconsistency of data, e.g.

when deleting a record in the database no mechanism

exists to check the corresponding spatial counterpart. A

solution to problems of dual architecture was a layered

architecture, in which all data is maintained in a single

RDMS.

 Since spatial data types were at that time not

supported at DBMS level, knowledge about spatial data

types was maintained in middle ware. Presently, most

mainstream DBMS offer spatial data types and spatial

functions usually in an object-relational spatial extend to

RDBMS Storing spatial data and performing spatial

analysis can be completed with SQL queries.

Additionally, integrated queries on both spatial and non-

spatial parts of features can be executed at database level.

The spatial data types and spatial operations reflect only

simple two-dimensional features, though embedded in 3D

space. This support of 3D/4D coordinates allows for

alternatives in management of 3D features. This paper

elaborates on current possibilities of DBMS to maintain

3D data. The next section discusses management and

visualisation of volumetric objects, 3D lines and 3D

points. Then the paper reports on prototype

implementations of new data types completed at section

GIS. Standardization activities within Open Geospatial

Consortium are briefly outlined with respect to resent new

initiatives. Last section concludes on demands and

expectations to the 3D geometry model.

II. 3-D DATA IN THE DBMS USING CURRENT

TECHNIQUES[3]

Providing the spatial extend, DBMS have

immediately been challenged by the third dimension. A

number of experiments were performed by several

researchers to investigate possibilities to store, query and

visualize features with their 3D coordinates. The good

news is: 3D data can be organized in DBMS, retrieved

and rendered by front-end applications. However, there is

also a bad news: since no 3D data type is currently

Supported by any DBMS, the user remains self-

responsible for the validation of the objects as well as for

implementing true 3D functionality. These conclusions,

with small variations, are consistent for all main-stream

DBMS: Oracle, IBM DB2, Informix, Ingres, and MySQL.

All of them offer 2D data types (basically point, line, and

polygon) but support 3D/4D coordinates (except Ingres,

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

which is 2D) and offer a large number of functions more

or less compliant with the Open Geospatial Consortium

(OGC) standards. Most of the functions are only 2D

dimensional (except, which supports few 3D operations),

i.e. although not reporting error, they omit the z-

coordinate.

A bit frustrating is the implementations of spatial

functions and operations: it varies with the DBMS. The

statement: select c from b where a < 100, where c, aare

numerical data type, can be executed in every DBMS.

However if c is a spatial data type and a is a given

distance, the SQL statement becomes de-pended on the

specific implementation. In some cases (e.g. Oracle

Spatial), even the names of the spatial data types are not

that apparent. Oracle Spa-tial has one complex data type

sdo_geometry composed of several parameters indicating

type geometry, dimension, and an array with the x, y, and

zcoordinates. The text bellow discusses possible

organisation of the 3D real-world features (volumetric,

line, point) in current DBMS. Note, the presented

approaches are not dependent on the DBMS.

Figure 1: Visualisation of buildings and surface, Represented by simple

polygons in Oracle Spatial

1. 3-D volumetric objects

Most discussed 3D features are volumetric objects, which

can be used for modelling of man-made objects, such as

buildings, and nature-made objects, such as geological

formations. To have those managed in the database, the

user can choose between:

1) Using DBMS data types polygon and multipolygon

OR

2) Creating a used-defined data type.

The three candidates for a simple volumetric

object are polyhedron, triangulated polyhedron and

tetrahedron (see for definitions next section) and all three

can be easily realized with provided data types. Moreover,

there is no practical difference in the implementation of

the polyhedron and triangulated polyhedron, since a

separate triangle data type does not exist. Tetrahedron

would allow for a bit simpler representation since it has

only four trianglesthe first option, i.e. defining a 3D

feature as a list of polygons can be realized by two

columns in one relational table, i.e. feature_ID and a

column for the spatial data type (i.e. polygon). If the

reality is quite complex, leading to many 3D features with

shaped polygons, the DBMS table should be normalized.

This means that the polygons have to be organized in a

separate table (containing polygon_ID and a column for

the spatial data type) and the 3D feature table should

contain the indices to the composing polygons. Clearly,

the separate relational table for volumetric objects would

be simpler if the volumetric object is tetrahedron. It can be

organized in a table with finite number of columns: one

for the ID of the tetrahedron and four for the composing

polygons (triangles). In the second approach, a 3D object

is stored using the data type multi-polygon, i.e. all the

polygons are listed inside the data type, which is

practically one record in the relational database. This case

requires only one table, which may contain only two

columns: feature_ID and column for the spatial data type.

An apparent advantage of the 3D multipolygon approach

is the one-to-one correspondence between a record and an

object. Furthermore the 3D multipolygon (compare to list

of polygons) is recognized as one object by front-end

applications (GIS/CAD). For example, a 3D

multypolygon is visualised as grouped polygons in

Bentley Micro station. However, in case of editing, the

group still has to be ungrouped into composing polygons

i.e. the group is not recognised as 3D shape.

User defined spatial data types can be

implemented using different approaches from the simple

SQL create data type statement, to more complex

implementations, using a Procedural Language (PL), Java,

C++, etc. The common drawback of such an

implementation is impossibility to apply the native spatial

functionality (operations and indexing) of DBMS.

Moreover the user-defined spatial data types cannot be

stored in the same column of the natively supported

spatial data types. Visualisation in front-end applications

would be possible only by developing individual

connections. User-defined spatial data types, however, are

very useful for proto-typing for approval of new concepts.

2. 3-D line objects

Typical examples of 3D line objects are utility

networks: pipeline and cable networks. Utility data and

systems have been always predominantly two-

dimensional. Only recently, investigations have been

initiated towards maintaining utility networks in three

dimensions. Motivation for this is extended usage of

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

underground space and therefore the apparent need of

more sophisticated mechanisms for visualizing several

networks in one environment.

Utility networks (represented as lines with 3D

coordinates) can be readily managed in DBMS using the

supported spatial data types line or multi-line. If required

by an application, some point objects (valves, connectors,

etc.) can be separately organized as points. The only

trouble of 3D lines is the visualisation in 3D scenes. It is

often recommended 3D lines to be substituted with tiny

cylinders when rendered. Indeed, such a substitution

cannot be justified only for visualisation purposes.

Therefore Du and Zla-tanova 2006 suggest keeping the

original data as 3D lines and creating 3D cylinders on the

fly only for the visualization (Figure 2).

Figure 2: 3D visualisation of pipelines,

Organised as lines in Oracle Spatial

3. 3-D point clouds

Until recently, 3D point objects were relatively

rare in real-world data sets and a little attention was given

on them. But, with the advances of sensor technology,

laser scanning techniques become available, which

produce large amounts of very specific 3D point data.

Theoretically, these points can also be organised in

DBMS by either

1) Using the supported spatial data types point

(Figure 3) and multipoint or

2) Creating a user-defined type. Depending on

the type of data (row or processed data), the user might

decide for either of the representations.

Usually the most common format of processed

laser scan data consist of seven parameters: x, y, z-

coordinates, intensity and colour represented by r, g, and

b-values. The advantage of point data types is possibility

to manage all these attributes for each individual point.

The major disadvantage refers data storage and indexing,

which are very expensive (one record per point). The

multipoint data type can be efficiently indexed, but the

points lose their identification, which might be important

for modelling purposes. Further-more, the number of

points in one multipoint has to be carefully considered for

an acceptable performance. Depending on the point

distribution and size of the point cloud, the operations can

become time consuming and thus difficult to handle.

Figure 3: 3D visualisation of point clouds,

Managed as points in DBMS

III. NEW 3D SPATIAL DATA TYPES [3]

As shown above, 3D real-world feature can be

stored and indexed in DBMS and retrieved for

visualisation and editing in front-end application but they

can be analysed only as 2D features. A true 3D geometry

data type (polyhedron and/or tetrahedron) and

corresponding 3D spatial operations (validation, volume,

length, intersection, etc.) are missing in all DBMS.

Furthermore, the simple 3D volumetric data type would

be still in-sufficient for handling many shapes (cone,

sphere) available in AEC/CAD applications.

The sections bellow will briefly present two

implementations of new 3D data types, i.e. polyhedron

and NURBS surface.

1. 3-D polyhedron

A 3-D spatial data type is the first most important

development to be made by DBMS. A simple 3D object

can be represented basically in three different ways as a

polyhedron (consisting of arbitrary number of planar

polygons which have arbitrary number of points),

triangulated polyhedron (consisting of an arbitrary number

of triangles) or tetrahedron (composed of four triangles).

All the three representations have advantages and

disadvantages. Tetrahedron is the simplest 3D object

consisting of a finite number of points and triangles.

While advantageous for computations and consistency

check , tetrahedrons are less appropriate for modelling of

man-made objects such as buildings, bridges, tunnels, etc.,

because the interior would require a subdivision into

tetrahedrons (which should be omitted for visualisation).

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

However, tetrahedrons are widely used in modelling

geological formations. The polyhedron is the most

appropriate representation for man-made objects, but its

validation is quite complex. Triangulated polyhedron is

compromise between the two ensuring at least the

simplicity of the polygons.

Figure 4: 3D polyhedron (Arens 2003) [1]

Arens 2003, and Arens etal 2005, have selected a

polyhedron for implementation, since it is the most

complex data type requiring strict validation rules. A

polyhedron is defined as a bounded subset of space,

enclosed by a finite set of planar polygons (not self-

intersecting) such that every edge of a polygon is shared

by exactly one other polygon. The polyhedron bounds a

single volume, i.e. from every point on the boundary,

every other point on the boundary can be reached via the

interior. The polyhedron has clearly defined inside/outside

space, i.e. it is Orientale. The polyhedron defined in this

way can have also cavities (Figure 4). The polyhedron

data type is implemented in Oracle Spatial object-oriented

data model, but the formalism is generic.

To avoid duplications of point coordinates (As

men-tioned above), the description has two sections:

1) A list of all the point co-ordinates and

2) A sequence of

polygons, each composed

of a list with in-dices to

the point coordinates of

the first section.

The validity of

the new data type is

controlled by a specially

designed function, which

checks the definition

rules. Several tests were

performed on the new data

type and the results were

positive.

2. 3-D freeform curves and surfaces

Freeform curves and surfaces such as Bezier, B-

spline and NURBS, are becoming progressively important

for modelling of buildings, towers, tunnels, etc. Very

often these models need to be integrated with 3D GIS for

investigations and adjustment of the construction (e.g. for

wind resistance). One option for such an integrated

environment can be DBMS.

NURBS [2] is the first candidate to be considered.

Some of the most important NURBS characteristics are

• NURBS offer a common mathematical form for

both, standard analytical shapes (e.g. cone,

sphere) and free form shapes,

• The shapes described by NURBS can be

evaluated reasonably fast by numerically

stable and accurate algorithms,

• Important characteristic for modelling real-world

objects is that they are invariant under affine

as well as perspective transformations.

The only drawback of NURBS is the extra storage

needed to define traditional shapes (e.g. circles). Using

NURBS data types, a circle can be represented in different

ways but the complexity is much higher compared to its

mathematical definition (i.e. radius and centre point). The

definition a NURBS curve consists of several quite

complex equations, which can be found elsewhere in the

literature.

The new data type has been prototyped for

Oracle Spatial, but outside the Oracle Spatial

SDO_GEOMETRY model, which means it can be readily

used for any spatial DBMS (MySQL, Informix, etc.).

Besides the validation function, few simple spatial

functions (rotation, translation, scale and distance) were

developed. Since the data type is much more complex

compared to the 3D polyhedron data type, a special care

was taken for the visualisation in AEC software, i.e. an

engine was developed to map the NURBS data type to the

internal representation of Micro station and AutoCAD

(Figure 5). Two NURBS models were tested with the

developed data type for retrieval, editing and posting.

Figure 5: NURBS building retrieved from DBMS

CONCLUDING REMARKS

In the last five years DBMS made a large step toward

maintenance of geometries as GIS used to manage them.

The support of 2D objects with 3D coordinates is adopted

by all mainstream DBMS. The offered functions and

operations are predominantly in the 2D domain. The

DBMS spatial schemas have to be extended to fully

Asian Journal of Convergence in Technology Volume II Issue III
Issn No.:2350-1146, I.F-2.71

www.asianssr.org Mail: asianjournal2015@gmail.com
Special issues of Convergence in Computing

represent the third dimension (first with simple volumetric

object and later with more complex 3D data types).

Concepts for 3D objects and prototype implementations

are already reported, DBMS have to make the next step

and natively support them. 3D operations and functions

have to be developed not only for the volumetric object

but also for all other objects embedded in 3D space. 3D

functionality is next to be considered. The 3D

functionality should not be completely taken away from

front-end applications such as GIS and CAD/AEC. 3D

Spatial DBMS should provide the basic (generic) 3D

functions, such as computing volumes and finding

neighbours.

Some existing data types are clearly not

sufficient for the purpose of some applications. A very

typical example is the mutypoint. It was definitely not

designed for large amounts of points as from laser

scanning. DBMS fail to handle efficiently such amounts

of data until now. Such points need a special treatment.

Triangle (or TIN) data type is also quite demanded. It is

likely that TIN will continue to be widely used for all

kinds of complex surface representations in GIS. Most of

the terrain representations presently maintained in GIS as

well as many CAD designs (meshes) are TIN

representations. TINs can be stored in DBMS using the

polygon data type.

Management of texture and mechanism for

texture mapping and texture draping is critical for

management of realistic 3D City models. 3D objects

usually need more attributes for visualisation compared to

2D objects. 3D Spatial DBMS has to offer an appropriate

3D user interface. To date, 3D user interfaces has not yet

been exhaustively examined. Future 3D query interfaces

should support the formulation of complex SQL-like

mixed spatial and non-spatial database queries as well as

3D graphical in-put supporting the intuitive graphical

formulation of 3D queries.

REFERENCES

[1].Arens, C, 2003, Maintaining Reality, Modelling 3D spatial objects in
a Geo-DBMS using a 3D primitive, Master's Thesis TU Delft, 2003.

[2].Piegl, L. and Tiller W., 1997, the NURBS Book 2
nd

Edition,

Springer-Verlag.

[3].3D geometries in spatial DBMS by

Sisi Zlatanova GISt, Delft University of Technology, the Netherlands.

