Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

Volume Il Issue Il

Three-Dimensional Spatial Data Types

'Sandeep D Bansode, 2Mrunal D Bhosale
YL ecturer , MCA dept., Ratnagiri
*Developer, Savy Software sol., Pune
!sandeep.bansode86@gmail.com, mrunalbhosalel@gmail.com
19975718997, 29921044179

Abstract:-Database management system have significantly
changed in the last several years from a system dealing with
management of administrative data they have involved to a
spatial DBMS providing spatial data types, spatial indexing
and extended spatial functionality. Spatial database system
as database system that offers spatial data types in its model
and query language and supports spatial applications.
Spatial database is mainly deal with 2-D dimensionaldata
(geometric data). This is sufficient for many spatial
application. But on the other hand our world is 3-D and a
number of possible application can be identified that would
be a greatly benefit from a treatment of 3-D data. Although
the provided functionality is limited to the second dimension,
various options exist for management of three-dimensional
data.

The idea of this topics (Research paper) is 3-D
geometric information of spatial database. Our research has
led so far to a called abstract model that identifies the
essential 3-D spatial data-types.

I. INTRODUCTION

DBMS has traditionally used to handle large
volume of data and to ensure the logical consistency and
integrity of data, which also have major requirements in
handling spatial data.

What is spatial database system?
1) A spatial dB system is a database system
2) It offers spatial data types in its data model and
query language.
Evolving to Spatial DBMS: [3]

DBMS have been traditionally used to handle
large volumes of data and to ensure the logical
consistency and integrity of data, which also have be-
come major requirements in handling spatial data. For
years, spatial data used to be organized in dual
architectures consisting of separated data management for
administrative data in a Relational DBMS (RDBMS) and
spatial data in a GIS. This is to say spatial data has been
managed in single files using proprietary formats. This
approach couldeasily result in inconsistency of data, e.g.
when deleting a record in the database no mechanism
exists to check the corresponding spatial counterpart. A
solution to problems of dual architecture was a layered

www.asianssr.org
Special issues of Convergence in Computing

architecture, in which all data is maintained in a single
RDMS.

Since spatial data types were at that time not
supported at DBMS level, knowledge about spatial data
types was maintained in middle ware. Presently, most
mainstream DBMS offer spatial data types and spatial
functions usually in an object-relational spatial extend to
RDBMS Storing spatial data and performing spatial
analysis can be completed with SQL queries.
Additionally, integrated queries on both spatial and non-
spatial parts of features can be executed at database level.
The spatial data types and spatial operations reflect only
simple two-dimensional features, though embedded in 3D
space. This support of 3D/4D coordinates allows for
alternatives in management of 3D features. This paper
elaborates on current possibilities of DBMS to maintain
3D data. The next section discusses management and
visualisation of volumetric objects, 3D lines and 3D
points. Then the paper reports on prototype
implementations of new data types completed at section
GIS. Standardization activities within Open Geospatial
Consortium are briefly outlined with respect to resent new
initiatives. Last section concludes on demands and
expectations to the 3D geometry model.

1. 3-D DATA IN THE DBMS USING CURRENT
TECHNIQUES[3]

Providing the spatial extend, DBMS have
immediately been challenged by the third dimension. A
number of experiments were performed by several
researchers to investigate possibilities to store, query and
visualize features with their 3D coordinates. The good
news is: 3D data can be organized in DBMS, retrieved
and rendered by front-end applications. However, there is
also a bad news: since no 3D data type is currently

Supported by any DBMS, the user remains self-
responsible for the validation of the objects as well as for
implementing true 3D functionality. These conclusions,
with small variations, are consistent for all main-stream
DBMS: Oracle, IBM DB2, Informix, Ingres, and MySQL.
All of them offer 2D data types (basically point, line, and
polygon) but support 3D/4D coordinates (except Ingres,

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

which is 2D) and offer a large number of functions more
or less compliant with the Open Geospatial Consortium
(OGC) standards. Most of the functions are only 2D
dimensional (except, which supports few 3D operations),
i.e. although not reporting error, they omit the z-
coordinate.

A bit frustrating is the implementations of spatial
functions and operations: it varies with the DBMS. The
statement: select ¢ from b where a < 100, where c, aare
numerical data type, can be executed in every DBMS.
However if ¢ is a spatial data type and a is a given
distance, the SQL statement becomes de-pended on the
specific implementation. In some cases (e.g. Oracle
Spatial), even the names of the spatial data types are not
that apparent. Oracle Spa-tial has one complex data type
sdo_geometry composed of several parameters indicating
type geometry, dimension, and an array with the x, y, and
zcoordinates. The text bellow discusses possible
organisation of the 3D real-world features (volumetric,
line, point) in current DBMS. Note, the presented
approaches are not dependent on the DBMS.

B S e b st b e e -

Pawt o PuEeA L

BARRERNY
K= oD umew $AATSD NNWAUEL 8- sl5s 5|

- § reren ve .

Figure 1: Visualisation of buildings and surface, Represented by sﬁble
polygons in Oracle Spatial

1. 3-D volumetric objects
Most discussed 3D features are volumetric objects, which
can be used for modelling of man-made objects, such as
buildings, and nature-made objects, such as geological
formations. To have those managed in the database, the
user can choose between:
1) Using DBMS data types polygon and multipolygon

OR
2) Creating a used-defined data type.

The three candidates for a simple volumetric
object are polyhedron, triangulated polyhedron and
tetrahedron (see for definitions next section) and all three
can be easily realized with provided data types. Moreover,

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

there is no practical difference in the implementation of
the polyhedron and triangulated polyhedron, since a
separate triangle data type does not exist. Tetrahedron
would allow for a bit simpler representation since it has
only four trianglesthe first option, i.e. defining a 3D
feature as a list of polygons can be realized by two
columns in one relational table, i.e. feature ID and a
column for the spatial data type (i.e. polygon). If the
reality is quite complex, leading to many 3D features with
shaped polygons, the DBMS table should be normalized.
This means that the polygons have to be organized in a
separate table (containing polygon_ID and a column for
the spatial data type) and the 3D feature table should
contain the indices to the composing polygons. Clearly,
the separate relational table for volumetric objects would
be simpler if the volumetric object is tetrahedron. It can be
organized in a table with finite number of columns: one
for the ID of the tetrahedron and four for the composing
polygons (triangles). In the second approach, a 3D object
is stored using the data type multi-polygon, i.e. all the
polygons are listed inside the data type, which is
practically one record in the relational database. This case
requires only one table, which may contain only two
columns: feature_ID and column for the spatial data type.
An apparent advantage of the 3D multipolygon approach
is the one-to-one correspondence between a record and an
object. Furthermore the 3D multipolygon (compare to list
of polygons) is recognized as one object by front-end
applications (GIS/CAD). For example, a 3D
multypolygon is visualised as grouped polygons in
Bentley Micro station. However, in case of editing, the
group still has to be ungrouped into composing polygons
i.e. the group is not recognised as 3D shape.

User defined spatial data types can be
implemented using different approaches from the simple
SQL create data type statement, to more complex
implementations, using a Procedural Language (PL), Java,
C++, etc. The common drawback of such an
implementation is impossibility to apply the native spatial
functionality (operations and indexing) of DBMS.
Moreover the user-defined spatial data types cannot be
stored in the same column of the natively supported
spatial data types. Visualisation in front-end applications
would be possible only by developing individual
connections. User-defined spatial data types, however, are
very useful for proto-typing for approval of new concepts.

2. 3-D line objects

Typical examples of 3D line objects are utility
networks: pipeline and cable networks. Utility data and
systems have been always predominantly two-
dimensional. Only recently, investigations have been
initiated towards maintaining utility networks in three
dimensions. Motivation for this is extended usage of

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

underground space and therefore the apparent need of
more sophisticated mechanisms for visualizing several
networks in one environment.

Utility networks (represented as lines with 3D
coordinates) can be readily managed in DBMS using the
supported spatial data types line or multi-line. If required
by an application, some point objects (valves, connectors,
etc.) can be separately organized as points. The only
trouble of 3D lines is the visualisation in 3D scenes. It is
often recommended 3D lines to be substituted with tiny
cylinders when rendered. Indeed, such a substitution
cannot be justified only for visualisation purposes.
Therefore Du and Zla-tanova 2006 suggest keeping the
original data as 3D lines and creating 3D cylinders on the
fly only for the visualization (Figure 2).

Pl L L L NIy ey T T—— PR TR

Figure 2: 3D visualisation of pipelines,

Organised as lines in Oracle Spatial

3. 3-D point clouds

Until recently, 3D point objects were relatively
rare in real-world data sets and a little attention was given
on them. But, with the advances of sensor technology,
laser scanning techniques become available, which
produce large amounts of very specific 3D point data.
Theoretically, these points can also be organised in
DBMS by either

1) Using the supported spatial data types point
(Figure 3) and multipoint or

2) Creating a user-defined type. Depending on
the type of data (row or processed data), the user might
decide for either of the representations.

Usually the most common format of processed
laser scan data consist of seven parameters: X, y, z-
coordinates, intensity and colour represented by r, g, and
b-values. The advantage of point data types is possibility
to manage all these attributes for each individual point.
The major disadvantage refers data storage and indexing,
which are very expensive (one record per point). The
multipoint data type can be efficiently indexed, but the

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

points lose their identification, which might be important
for modelling purposes. Further-more, the number of
points in one multipoint has to be carefully considered for
an acceptable performance. Depending on the point
distribution and size of the point cloud, the operations can
become time consuming and thus difficult to handle.

—

T —p——

o

e b .

LN
FI=Ee]

-lln -

[Ewb.w
R Y

'L SERERE YT P PR ==
o o B — 73] e ™

Figure 3: 3D visualisation of point clouds,

Managed as points in DBMS

I11. NEW 3D SPATIAL DATA TYPES [3]

As shown above, 3D real-world feature can be
stored and indexed in DBMS and retrieved for
visualisation and editing in front-end application but they
can be analysed only as 2D features. A true 3D geometry
data type (polyhedron and/or tetrahedron) and
corresponding 3D spatial operations (validation, volume,
length, intersection, etc.) are missing in all DBMS.
Furthermore, the simple 3D volumetric data type would
be still in-sufficient for handling many shapes (cone,
sphere) available in AEC/CAD applications.

The sections bellow will briefly present two
implementations of new 3D data types, i.e. polyhedron
and NURBS surface.

1. 3-D polyhedron

A 3-D spatial data type is the first most important
development to be made by DBMS. A simple 3D object
can be represented basically in three different ways as a
polyhedron (consisting of arbitrary number of planar
polygons which have arbitrary number of points),
triangulated polyhedron (consisting of an arbitrary number
of triangles) or tetrahedron (composed of four triangles).
All the three representations have advantages and
disadvantages. Tetrahedron is the simplest 3D object
consisting of a finite number of points and triangles.
While advantageous for computations and consistency
check , tetrahedrons are less appropriate for modelling of
man-made objects such as buildings, bridges, tunnels, etc.,
because the interior would require a subdivision into
tetrahedrons (which should be omitted for visualisation).

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

However, tetrahedrons are widely used in modelling
geological formations. The polyhedron is the most
appropriate representation for man-made objects, but its
validation is quite complex. Triangulated polyhedron is
compromise between the two ensuring at least the
simplicity of the polygons.

Figure 4: 3D polyhedron (Arens 2003) [1]

Arens 2003, and Arens etal 2005, have selected a
polyhedron for implementation, since it is the most
complex data type requiring strict validation rules. A
polyhedron is defined as a bounded subset of space,
enclosed by a finite set of planar polygons (not self-
intersecting) such that every edge of a polygon is shared
by exactly one other polygon. The polyhedron bounds a
single volume, i.e. from every point on the boundary,
every other point on the boundary can be reached via the
interior. The polyhedron has clearly defined inside/outside
space, i.e. it is Orientale. The polyhedron defined in this
way can have also cavities (Figure 4). The polyhedron
data type is implemented in Oracle Spatial object-oriented
data model, but the formalism is generic.

To avoid duplications of point coordinates (As
men-tioned above), the description has two sections:

1) A list of all the point co-ordinates and

' — 2) A sequence of
P 1 polygons, each composed
of a list with in-dices to
the point coordinates of

; » the first section.
| The validity of
the new data type is
controlled by a specially
designed function, which
checks the definition
rules. Several tests were
performed on the new data
type and the results were

positive.

2. 3-D freeform curves and surfaces

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

Freeform curves and surfaces such as Bezier, B-
spline and NURBS, are becoming progressively important
for modelling of buildings, towers, tunnels, etc. Very
often these models need to be integrated with 3D GIS for
investigations and adjustment of the construction (e.g. for
wind resistance). One option for such an integrated
environment can be DBMS.

NURBS [2] is the first candidate to be considered.
Some of the most important NURBS characteristics are

* NURBS offer a common mathematical form for
both, standard analytical shapes (e.g. cone,
sphere) and free form shapes,

¢ The shapes described by NURBS can be
evaluated reasonably fast by numerically
stable and accurate algorithms,

* Important characteristic for modelling real-world
objects is that they are invariant under affine
as well as perspective transformations.

The only drawback of NURBS is the extra storage
needed to define traditional shapes (e.g. circles). Using
NURBS data types, a circle can be represented in different
ways but the complexity is much higher compared to its
mathematical definition (i.e. radius and centre point). The
definition a NURBS curve consists of several quite
complex equations, which can be found elsewhere in the
literature.

The new data type has been prototyped for
Oracle Spatial, but outside the Oracle Spatial
SDO_GEOMETRY model, which means it can be readily
used for any spatial DBMS (MySQL, Informix, etc.).
Besides the validation function, few simple spatial
functions (rotation, translation, scale and distance) were
developed. Since the data type is much more complex
compared to the 3D polyhedron data type, a special care
was taken for the visualisation in AEC software, i.e. an
engine was developed to map the NURBS data type to the
internal representation of Micro station and AutoCAD
(Figure 5). Two NURBS models were tested with the
developed data type for retrieval, editing and posting.

Figure 5: NURBS building retrieved from DBMS

CONCLUDING REMARKS
In the last five years DBMS made a large step toward
maintenance of geometries as GIS used to manage them.
The support of 2D objects with 3D coordinates is adopted
by all mainstream DBMS. The offered functions and
operations are predominantly in the 2D domain. The
DBMS spatial schemas have to be extended to fully

Mail: asianjournal2015@gmail.com

Asian Journal of Convergence in Technology

Issn No.:2350-1146, |.F-2.71

represent the third dimension (first with simple volumetric
object and later with more complex 3D data types).
Concepts for 3D objects and prototype implementations
are already reported, DBMS have to make the next step
and natively support them. 3D operations and functions
have to be developed not only for the volumetric object
but also for all other objects embedded in 3D space. 3D
functionality is next to be considered. The 3D
functionality should not be completely taken away from
front-end applications such as GIS and CAD/AEC. 3D
Spatial DBMS should provide the basic (generic) 3D
functions, such as computing volumes and finding
neighbours.

Some existing data types are clearly not
sufficient for the purpose of some applications. A very
typical example is the mutypoint. It was definitely not
designed for large amounts of points as from laser
scanning. DBMS fail to handle efficiently such amounts
of data until now. Such points need a special treatment.
Triangle (or TIN) data type is also quite demanded. It is
likely that TIN will continue to be widely used for all
kinds of complex surface representations in GIS. Most of
the terrain representations presently maintained in GIS as
well as many CAD designs (meshes) are TIN
representations. TINs can be stored in DBMS using the
polygon data type.

Management of texture and mechanism for
texture mapping and texture draping is critical for
management of realistic 3D City models. 3D objects
usually need more attributes for visualisation compared to
2D objects. 3D Spatial DBMS has to offer an appropriate
3D user interface. To date, 3D user interfaces has not yet
been exhaustively examined. Future 3D query interfaces
should support the formulation of complex SQL-like
mixed spatial and non-spatial database queries as well as
3D graphical in-put supporting the intuitive graphical
formulation of 3D queries.

REFERENCES

[1].Arens, C, 2003, Maintaining Reality, Modelling 3D spatial objects in
a Geo-DBMS using a 3D primitive, Master's Thesis TU Delft, 2003

[2].Piegl, L. and Tiller W., 1997, the NURBS Book 2 Edition,
Springer-Verlag.

[3].3D geometries in spatial DBMS by

Sisi Zlatanova GISt, Delft University of Technology, the Netherlands.

www.asianssr.org
Special issues of Convergence in Computing

Volume Il Issue Il

Mail: asianjournal2015@gmail.com

