Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

Volume IV Issue |

A Robust, Efficient FPGA based implementation of
edge detection using Sobel mask

S. Siddhartha Raman
Department of Electrical and
Electronics Engineering
BITS Pilani HyderabadCampus,

Hyderabad, Telangana
f20150572@hyderabad.bits-pilani.ac.in

Abstract—Image Processing has traditionally
been one of the most popular applications of
FPGAs. Usually computationally expensive, image
processing algorithms are best implemented on
customizable hardware platforms like FPGA
boards. The process of convolution has been a
very powerful tool in identifying the response
of a system given an input. The same thing can
be extended to image processing in the sense
that it is used for the purpose of finding the
output image when acted upon by various
filters [1]. In this paper, we have restricted
ourselves to finding the resultant image when
applied upon by sobel mask (to perform edge
detection). The sobel mask is used so as to
detect edges and identify whether the edges of
an image are spurious. The coefficients of the
mask are then convolved with the gray scale
images so as to produce desired images. This
paper presents a novel implementation of Edge
detection using a Sobel mask on a Zyng 7000
board

Keywords— FPGA, Sobel
Detection, Kernel, Vivado HLS

Mask, Edge

I. INTRODUCTION

With the advancement in the technology in the
Very Large Scale Industries, there has been a large
increase in the number of hardware devices that
have been coming up. One of the major devices
that have been used is the Field Programmable
Gate Array. It has a large number of LUT’s, flip
flops which can be used for the purpose of storing
information as shown in Fig.1. This has been used

Rahul Gottipati
Department of Electrical and
Electronics Engineering
BITS Pilani HyderabadCampus,

Hyderabad, Telangana
20150957 @hyderabad.bits-pilani.ac.in

for the purpose of implementing edge detection in
this paper. The software that has been used
primarily for this purpose is Vivado High Level
Synthesis(Vivado HLS) wherein the target file is
in Verilog language. The major reason behind
using this is that a wide range of computer vision
libraries are available and have been used for the
purpose of detection of edges. For instance, HLS
opencv header file has been used in the
implementation of edge detection. Edge detection
focuses on identifying points of sharp contrast in
brightness in digital images. Edges are collections
of such points that form curves and segments in an
image. Discontinuities in image brightness can be
attributed to a variety of scenarios such as a
sudden/sharp change in depth or orientation of a
surface, differences in illumination of
neighbouring points etc. Edge detection helps
weed out a lot of information that may not be
relevant in many cases, such as when we are only
concerned with the structural setup of the scene in
an image. This corresponds only to the various
surface boundaries of objects and how they are
oriented with respect to each other, and excludes
information about brightness, colour and other
properties of image data points. The resulting
image from applying edge detection is
significantly smaller in size compared to the
original image, and this can be of huge value since
the data to for subsequent processing is reduced
dramatically.

WWWw.asianssr.org

Page 1

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

CLB
Frrrttnanaaananaaanananan)
i |
e = wux
c—— LUT | OP
= :
: D-Flip :
FI
Rstl op :
1 > :
Clk+ S i
L------------------------'
FPGA Logic Block

Fig.1 FPGA Block

There are several methods to detect edges in an
image, which can be grouped into two broad
categories : zero-crossing and search based. Zero
crossing method deals with the Laplacian
Operator. Laplacian operator is the second
derivative of an image. The points where the
Laplacian changes its sign (crossing zero) is noted
and these points are generally the edges of an
image. Search based edge detection is based on
detecting edges, as a function of first order
derivate of edge strength and then searching for
local maxima of magnitude using gradient
direction. Sobel mask based edge detection is a
search based method, and is one of the most
common practical image processing algorithms.
Sobel Operator is a kernel based matrix operator
which comprises of two 3x3 kernels that are
convolved with the original image to vyield
approximate calculations of the gradient of image
strength function - one for vertical edge
discontinuities and other for horizontal edge
discontinuities. The two can be combined to yield
a single mask by appropriate selection of
coefficients which will give appropriate focus to
all directions of discontinuity in an image by
adjusting the weights. This is then convoluted with
the input image as shown in Fig.2. The averaging
element in the Sobel mask helps in the smoothing
out of an image by removing small scale random
noise extremities, giving it an advantage over
other masks that cannot usually accomplish this
extra function. In mathematical form, the process
of convolution [1] can be seen as Fig.3

Volume 1V Issue |

for each image row in {nput imoge:
for each pixel in image row
set accumulator to 2ero
for each kernel row in kernel
for each element In kernel row
if element position corresponding® to pixel position then
nultiply element value corresponding® to pixel value
add result to accumulator
endif
set output {mage pixel to accumulator
Fig.2 2D Convolution -
Pseudocode

[II|1ll|IH‘1 [OWS

input@kernel L Liupllli.r 0,3 = b) kernel(z, y)

=l =l

Fig. 3. Mathematical representation

Where kernel(x,y) is the Mask and input(x,y) is
the image.

There are many edge detection algorithms like
Sobel edge
Detection, Canny edge detection, etc. The Sobel
edge detection algorithm has been chosen because
of the innate nature of it being simple. The mask
just involves an approximation of finding the
gradient of an image by moving the mask over the
entire image[1]. One more advantage is that it is
possible to identify the orientation of the edges. It
is also less sensitive to noise which implies that
the Sobel mask does not detect spurious edges
which is one of the major advantages over other
edge detection algorithms.

The paper starts with describing about the
related works that have been performed
earlier(Section 2) , the proposed idea (Section 3),
results obtained (Section 4), the implementation
of the algorithm on FPGA(Section 5), comparison
with the results obtained from Santanu.et.al
method and the results obtained from the method

WWWw.asianssr.org

Page 2

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

that we have used(Section 6) followed by the
conclusion.

1. RELATED WORK

The edge detection algorithms are very much
useful in real time applications like self-driving
cars, classification of medical images, etc [2]. The
edge detection algorithm just involves finding the
edges of the number plates, self- driving cars so as
to find the boundaries of the cars, etc. There have
been other methodologies that have been proposed
earlier like Santanu et.al method [3]. There have
also been papers published on the process of
convolution of images which forms the basis of
most of image processing algorithms [4], [5]. The
work that we have performed primarily focusses
on detecting the edges using Sobel Masks.

-1 0 | +1 +1] +2 | +1

210 |42 0100

110 |41 1]-2 |-

Gy Gy

Fig. 4. Sobel Mask kernel

I11. PROPOSED IDEA

The process of differentiation [6] in digital
domain can be approximated using the following
equations:

Gy)=fx+1,y-1-f(x+1,y+1)+

2* (f(x,y-1)-f(x,y+1)+

fx — 1, y - 1) - fx — 1y + 1)
(1)

Gly)=f(x+1,y-1)-f(x-1,y-1) +
2% (f(x+1,y) -f(x-1,y)) +

Volume 1V Issue |

fix + 1, y + 1) - fx — 1y + 1)
)

This in turn helps in finding the slope of the edge
because

tan(Gy/Gx) =
©)

Thus we get the orientation of the edge in the
image. The mask shown in Fig.4 is moved on the
image so that the differentiation of the pixel
values is found along both x axis (Gx) and y axis
(Gy). In the above equations, the gray scale value
of the center pixel when the Sobel mask is moved
is assumed to be f(x,y) and the x is increasing in
the conventional x-axis direction whereas y is
increasing in the conventional negative y-axis
direction.

IV. IMPLEMENTATION OF PROPOSED IDEA

For the hardware implementation we have first
used Vivado High Level Synthesis and then
performed testing by using Sobel Mask [7]. The
output image obtained after performing edge
detection was then stored as a bmp file in the
same folder as that of the input image, the sources
folder of Vivado HLS. Then we have exported
core in Vivado and generated an IP (Intellectual
Property) using which generation of bitstream was
performed. The generated bitstream was used
along with the bit converted image, and the
obtained values were fed into Xilinx SDK
(Software Development Kit), where the process of
convolution with the input stream was performed
S0 as to give the output stream of bits. The output
stream is then obtained by accessing a particular
location on the memory. The values that were
accessed are then converted back to the required
output using MATLAB [8]. The flowchart is
shown in Fig.5.

Slope

WWWw.asianssr.org

Page 3

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

Vivado _ Vivado IP
HLS Integrator
L |
SDK-Software
Generate
development -
kit Bitstream

Output in
MATLAB

Fig.5 Flowchart of the implementation

A. Implementation Logic

The process of convolution requires that we
need to use a sampling window of size which is
same as that of the sobel mask kernel. This can be
done by using a Line Buffer which is used in the
implementation for the process of window
weights and also that the size of the buffer is one
less than the number of columns in the image [9].
The size that is used also determines the latency
produced by the buffer. This is taken care by the
program written in Vivado HLS. The figure 6
shows the line buffer for a sobel mask of 3*3 size.
The process of convolution is just a process of
multiplication and accumulation (MAC) [10]. It is
obtained by the multiplication of the weights of
the values obtained from the sampled window
with the corresponding values in the kernel and in
turn stored in the memory. The figure 7 shows the
MAC.

Volume 1V Issue |

B. Vivado High Level Synthesis

Vivado High Level Synthesis (HLS) is a very
important tool that allows the users to implement
the logic that is need
in high level languages like C++ or C. Before
performing the implementation on Vivado HLS,
we require buffer logic and window, this was
implemented. A test-bench code, a function
calling the sobel mask, a function performing the
edge detection was used. There were various open
CV libraries of Xilinx that were used for the
purpose of implementation [12]. For instance HLS
opencv header file was used in programming. The
input image is shown in the figure 8.

The output image (as shown in Figure 9)
obtained after performing edge detection is
obtained below. As clearly shown, only edges or
areas of high contrast discontinuity can be
discerned and the rest are mostly blacked out. In
this way ,the size of the output image has reduced
drastically compared to the original and further
image processing, if required, is made much
easier.

Wi W2 WO W W5 W6 W7 owWe wo
x K1 xK2 x K3 x K4 x K5[x K6 x KTx K8 x K9

wy we Wi \ 1 \ 1 \ L] \
+ + LALE BUR 2 + * Result
* Line Buffer o W * °d ot W)
3 w5 .
i w Fig.7 MAC
Line Butter
"1 " "1
w) 7] "
Line Butfer " " "
W1 W2 W)
W WEWSWE
Wiwswy
Fig.6 Line Buffer for Sobel Mask
WWW.asianssr.org Page 4

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

1

Fig.8 Input/ Original Image

C. Vivado IP Generator

After performing the synthesis, running C
simulation in HLS, the corresponding IP was
exported from HLS. This is done so as to integrate
with the Zyng 7000 Zedboard. This also requires
Zyng processor IP so as to process the data that
IS given as input and also to interface the data
stream with the AXI channel protocol that is
utilized by the hardware. A DMA (Direct Memory
Access) IP is also used so as to save the values
that were accumulated and also to input the data
to the IP core required for the processing of
images. Timer
was also included so as to determine the time
elapsed for the
process of execution [11].

Volume 1V Issue |

Fig. 9 Image obtained after performing edge
detection

The figure 10 shows the [IP Generator
Implementation. The IP design is validated
following which a HDL wrapper is created and
then bit stream is generated. The bit stream
generation is followed by programming the device
so as to check if the implementation is
syntactically right. This is then followed by usage
of Xilinx Software Development Kit.

AXM Libe AX

- Tima
nterlonnecl e

mage Process
P

Fig.10 IP Generator

WWWw.asianssr.org

Page 5

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

D. Xilinx Software Development Kit

Xilinx Software Development Kit has been used
to send the input stream and to run the output. The
input stream of the image that has been generated
from MATLAB serves as an input to the function
that has been called in the Xilinx Software
Development Kit C++ file [13]. The bit stream
generated is then loaded and the output’s address
location is

obtained from the values stored in DMA and then
are accessed via XMD console and is later stored
in a log file [14]. This log file is necessary
because it contains the required pixel magnitude
values in hexadecimal.

E. MATLAB

MATLAB has been used in the project for two
main reasons:

The primary purpose is the generation of the input
stream by conversion of the input image into a
stream of pixels. The secondary purpose is the
realization of the output log file (which stores the
pixel values in hexadecimal form) which is

Volume 1V Issue |

A. Timing Summary

- Timing (ns)

Summary
Clock | Target Estimated | Uncertainty
default| 10.00 8.69 1.25

- Latency (clock cycles)

-l Summary
Latency Interval
min max min max | Type
2359816 2359816 (2359817 (2359817 | none
Detail

7 Instance

7 Loop

Fig.11 Timing summary

B. Timing Summary

The following table shows the results of HLS co-
simulation.

utilization Estimates

generated from Xilinx SDK into desired output] SUmmary
image. The process of realization of the output Name | BRAM_18K|DSP48E FF | LUT
from its hexadecimal output requires a converter. Expression - 9 0| 828
This logic iterates in two loops because one is FIFO . - - .
required for looping along the rows and the other Instance r] 184 714
is required for looping along the columns. This Memory 3 - ol 0
populates the 2D array with hexadecimal values Multiplexer))) 351
which is then converted back to an image form. . '
Register - - 731 -
V. RESULTS AND DISCUSSION Total 5 9 915 17293
The following tables suggest the utilization results Available 280| 220 106400|53200
that were utilization (%) 1 4 =0 2
obtained. : . o .
Fig.12 Utilization Estimates
WWW.asianssr.org Page 6

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

C. Instances Results

B 3 Instance
Instance Madule BRAM_18K| DSP4GE | FF | LUT
toimgProc CRTL BUS 5 axi U doimgProc CRIL BUS 5 & 0 011N
oimgProc KERNEL BUS s aw U dolmqProc KERNEL BUS s ax l 01110 110
Tatal { I 0w
| Memary
Memary Module BRAM 18 FF | LUT Words | Bits Baris| WeBits*Banks
lineBuff val 0 U doimgPrac lineguff val 0 110 0 2 § 1 40%
lineBuff val 1 U dolmafroc lineBuff val 0 10 0 52 & 1 409
lineBuff val 2 U dolmagProc lineBuff val 0 1o 0 52 & 1 404
fotal 3 i0 0156 ¥ 3 12788

Fig.13 Instance results

D. Post Implementation Results

Utilization - Post-Implementation

»

Resource Utilization Available Utilization %

FF 5016 106400 4.7
LuT 4692 53200 8.82
Memory LUT 179 17400 1.03
BRAM 45 140 kWi |
BUFG 1 32 312

Fig.14 Utilization Results

The existing method has the utilization of slice
LUTs as 5.625 percent [3] whereas the method
that we have used requires only a utilization of 2
percent as shown in Fig.12 which is nearly half the
usage of the given method.

The existing method has a maximum frequency
of 236 MHz [3] whereas the method that we have
used gives a maximum frequency of 432 Mhz as
shown in Fig.11 that is nearly twice the frequency
of the existing method. This implies the
computation is faster when compared to the
existing one.

VI. CONCLUSION

Volume 1V Issue |

The proposed design is able to compute at a faster
rate when compared to the existing designs. This
in turn leads to operations being performed at a
faster frequency than the existing one [3]. Hence,
the time to process an image is less
comparatively. When this is used for larger
computations, the process can show a significant
difference. The time complexity of the algorithm
that has been used is pretty less than the other
algorithms for hardware implementation of Sobel
edge detection. The usage of lesser number of
LUTs leads to a conclusion that utilization of the
resources are more efficient in comparison to the
existing technology. This in turn leads to longer
lasting of the resources that are existing.

VIl. FUTURE SCOPE

One way to move forward would be: The
latency in the processing of the images can further
be reduced by performing the convolution process
in a parallel fashion by breaking down the existing
image into different portions so that the
processing of each part is done in a separate core
and then later make provisions for getting back
the parts of the image.

VIIl. ACKNOWLEDGEMENT

S. Siddhartha Raman and Rahul Gottipati are
thankful to Dr. S.K. Sahoo for giving us the
opportunity to explore implementation of
algorithms used in computer vision and image
processing to FPGA. This has helped us broaden
our view of the cutting edge research being done
in this area as well as given us practical
experience in working with implementing real
world research problems on FPGAs.

REFERENCES

[1]B. Draper, R. Beveridge, W. Bhm, C. Ross
and M. Chawathe. Implement-ing Image
Applications on FPGAs. International
Conference on Pattern Recognition, Quebec
City, Aug. 11-15, 2002.

WWWw.asianssr.org

Page 7

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

[2]Johnston, C. T., K. T. Gribbon, and D. G.
Bailey. Implementing image processing
algorithms on FPGAs.. Proceedings of the
Eleventh Elec-tronics New Zealand
Conference, ENZCon04. 2004 .

[3]Santanu Halder, Debotosh Bhattacharjee, Mita
Nasipuri, Dipak Kumar Basu. A Fast FPGA
Based Architecture for Sobel Edge Detection..
Progress in VLSI Design and Test pp 300-
306.

[4]Guo, Zhengyang, Wenbo Xu, and Zhilei Chai.
Image edge detection based on FPGA. In
Distributed Computing and Applications to
Business Engineering and Science
(DCABES), 2010 Ninth International Sympo-
sium on, pp. 169-171. IEEE, 2010.

[5]S.Brown, J.Rose, Architecture of FPGA’s and

CPLD’s ; a tutorial IEEE Des.Test
Comput.13(2)(1996)4257
[6]R.0.Duda,P.E.Hart, et al.Pattern

classification and scene analysis vol.3, Wiley
New York,1973

[7]J.C. Russ, The Image Processing Handbook,
CRC press, 2015

[8]R.C. Gonzalez, R.E. Woods, S.L. Eddins,
Digital image processing using
MATLAB(2004)

[9]A.G. Vicente, 1.B. Munoz, P.J. Molina, J.L.L.
Galilea, Embedded vision modules for
tracking and counting people,Instrum,Meas.
IEEE Trans. 58(9)(2009) 30043011

Volume 1V Issue |

[10] J. W. Pierre, A novel method for
calculating the convolution sum of two
finite length sequences in IEEE Transactions
on Education, vol. 39, no 1, pp. 77-80, Feb
1996.

[11] M. Boo, E. Antelo, J. Bruguera, VIsi
implementation of an edge detector based on
sobel operator, EUROMICRO 94. System
Architecture and Integration. Proceedings of
the 20th EUROMICRO Conference. IEEE,
1994, pp. 506512.

[12] Guobo Xie and Wen Lu, Image Edge
Detection Based On Opencv, International
Journal of Electronics and Electrical
Engineering Vol. 1, No. 2, June 2013.

[13] M. Balaji, S. Allin Christe, FPGA
Implementation of Various Image Processing
Algorithms Using Xilinx System Generator,
Computational Intelligence in Data Mining —
Volume 2 pp 59-68

[14] Nazma Nausheen, Ayan Seal, Pritee
Khanna, Santanu Halder, A FPGA based
implementation of Sobel edge detection,
Elsevier 04, vol.27, no.2.

WWWw.asianssr.org

Page 8

http://www.asianssr.org/

	I. Introduction
	II. RELATED WORK
	III. PROPOSED IDEA
	IV. IMPLEMENTATION OF PROPOSED IDEA
	A. Implementation Logic
	B. Vivado High Level Synthesis
	C. Vivado IP Generator
	D. Xilinx Software Development Kit
	E. MATLAB

	V. RESULTS AND DISCUSSION
	A. Timing Summary
	B. Timing Summary
	C. Instances Results
	D. Post Implementation Results

