Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

Volume 1V Issue 111

Search and Highlight of Required Substrings in Printed Documents using
OCR

Implementation of software application to digitally highlight desired text in hard copies

A. Athul Krishna A, Student, College of Engineering TVM, B. Bharath Kartha, Student, College of
Engineering TVM and C. Vishnu S Nair, Studnet, College of Engineering TVM

Abstract—The implementation of a software application to search for and highlight desired text in a printed
document is explained in this paper. An image feed of the hard copy in which search is to be done is given as
input to software along with the desired substring whose location is to be identified within document. The
program explained in this paper coverts the image to a text document using the Optical Character Recognition
(OCR) engine Tesseract, searches through it, highlights the desired substring in the image and displays it,
thereby making the detection of its location in the actual hard copy an easy job.

Keywords—dynamic optical character recognition, substring
search in printed documents

I. INTRODUCTION

Human brains have evolved such as to devote maximum
image processing power to identifying faces, patterns and other
natural phenomenon. Consequently, they are bad at locating
specific details in information dense situations. This becomes
apparent especially in text available as printed documents and
images (as opposed to digital text documents where most
usually a search option is present for easy location of desired
substring). Thus in such applications, wherein human have to
search for words and patterns in a text dense copy or image, the
process is often unnecessarily time consuming and frustrating
for the user. The technology introduced in this paper provides a
search facility to real life documentations. This technology
reads characters from a desired image and finds desired letters
or words from the aforementioned image input.

By using a camera (or any other such imaging devices) a
digital copy of the desired document or dense text is generated
and input to the software. The technology elucidated in the
forthcoming sections leverages advances in Optical Character
Recognition systems (OCR) to generate a word searchable file
of the letters and words identified from the input image. This
file can then be searched to locate desired keywords and
substrings by the user. To facilitate ease in locating the position
of the identified text in the original input image (of the printed
document), a digital copy is generated highlighting the located
word in the image itself. In the prototype developed,
Tesseract[1] is used as the OCR engine, python[2] is used as
the programming language, and various libraries within python
like PIL[3], Tkinter[4], os [5] etc are used.

The rest of this paper is divided into the following
sections : Section II deals with how the software was
implemented, Section III details the algorithm used, Section IV
describes one specific application where this technology can be
utilized, Section V some miscellaneous applications, Section
VI gives some test results of the software, Section VII gives
some possible future work and improvements and Section VIII
is the conclusion.

II. IMPLEMENTATION

@ & @ Enter Image

Select input method

From File

Fig 1: GUI to select image for OCR engine

New Image

WWW.asianssr.org

Page 1

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

- @ @ search Result nt

Enter Sez g' TRUE

Fi

Fig 3: GUI to disp
search result

Open Camera and
take image

Tesseract is an optical character recognition engine for
various operating systems. It is free software, released under
the Apache License, Version 2.0, and development has been
sponsored by Google since 2006. In 2006 Tesseract was
considered one of the most accurate open-source OCR engines
then available.

For this particular project, the Tesseract engine has been
utilized for the purpose of Optical Character Recognition.
Python-tesseract[6] is a wrapper for "Google's Tesseract-OCR
Engine[7][8].Python-tesseract is also useful as a stand-alone
invocation script to tesseract, as it can read all image types
supported by the Python Imaging Library(PIL), including jpeg,
png, gif, bmp, tiff, and others, whereas tesseract-ocr by default
only supports tiff[9] and bmp[10]. Additionally, if used as a
script, Python-tesseract will also print the recognized text
instead of simply writing it to a file.

However, its efficiency for the said purpose of this paper
has not been studied and rather Tesseract engine itself has been
utilized using the 'os' library of python. The OS module in
Python provides a way of using operating system dependent
functionality. The functions that the OS module provides
allows you to interface with the underlying operating system
that Python is running on — be that Windows, Mac or Linux. In
this particular project, the operating system used was Linux
(Ubuntu 14.04 LTS).

Further, for image manipulation, the Python Imaging
Library (PIL) has been used. PIL (in newer versions known as

Image Input

Volume 1V Issue 111

Pillow) is a free library for the Python programming language
that adds support for opening, manipulating, and saving many
different image file formats. It is available for Windows, Mac
OS X and Linux. Its successor project Pillow adds support for

rake New Image’
from Camera?

1

Input Substring to be

searched /

‘Search another
substring in same

Search in identified text for all
No instances of desired substring

Highlight located substring using
coordinates of first and last letter of

substring identified in text

Process Image with
Tesseract OCR to get
box file containing
identified text and letter
coordinates

I

Display Image with highlighted text

Fig 4: Flowchart representation of working

Python 3.x. For the project described in this paper, Python
version 2.7.6 has been utilized. The 'sys'[11] library has also
been used to parse arguments of input image file from user and
a flag from the user, to be used during execution of the
program.

1. ALGORITHM

The flowchart given in Figure 4 illustrates the overall
algorithm followed for implementation.

Pseudo Code:

1)Prompt user for input image - select existing or take new
image from web cam or any such imaging device connected to
device used for the purpose.2)Pass the input image through the
Tesseract engine via the OS library with appropriate
parameters so as to produce the .box file. This file format is
output from the Tesseract engine itself and contains the
individually identified text in the input document as well as the
coordinates of these individual letters within the original
image.

3)Input substring to be searched from user. This can be letters,
words or phrases, input as String type data.

4)When substring has been received, calculate its length and
search the generated .box[12] file for all instances of the
substrings of same length as the input, with equal letter

WWW.asianssr.org

Page 2

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 1.F-5.11

positions(not counting the spaces between words, which is not
identified by Tesseract).

5) Once substring location has been identified (Output "True")
within the image, highlight the desired region using coordinate
data of individual letters as can be selected from the .box file
within a rectangle (using the PIL library). If no substring could
be identified in image, return output "False" and skip to step 7.

6)Display the image with identified substring(s) highlighted.

7)Prompt user to search for another substring in image. If yes,
go back to step 3. Else, to step 8.

8)Prompt user to input another image to be searched. If yes, go
back to step 1. Else, end the program.

For non-GUI application, the first argument (zeroth argument
is name of file itself) passed via the terminal and parsed by the
program, is a flag (taking value 0 or otherwise) which the user
can input to tell the program whether to regenerate the .box

file; and the input image name (.jpg file) can be
passed by user as second argument in the terminal.
The former, the first flag argument, is useful as
generation of the .box file is the most time and
memory consuming process in the application and
inclusion of a flag to make its generation optional
helps increase efficiency, especially when user
wants to search for multiple substrings within the
given image and/or accidentally or otherwise closed
the application and would like to search for another
substring in the last input image itself.

Iv. APPLICATION IN BOARD BRING-UP

A primary motivation for implementing this project
came to the authors while working on a Board
Bring Up session at an embedded systems industry.
Board bring-up is a phased process whereby an
electronics system, inclusive of assembly, hardware,
firmware, and software elements, is successively
tested, validated and debugged, iteratively, in order
to achieve readiness for manufacture. It is an
absolute must before any embedded product is
brought to the market via mass production and is
unavoidably done by all manufacturers to prevent
loss and ensure reliability of the product. Board
bring up is often a very lengthy and arduous process
that takes up a lot of development time and is done
manually by trained verification engineers.

Volume 1V Issue 111

The first and most important step of Board bring up
is known as visual inspection. This is often also the
most tiring and time consuming phase, especially
for more complex circuits. Visual inspection phase
consists of the verification engineer manually
examining the printed board for defects. This
includes checking for short circuits, break in
connections, improper soldering, and making sure
all the components that should be in place are in
their correct places in the correct configuration and
polarity, and also making sure that components
marked as Don't Place (or its equivalent
terminology) haven't been placed(soldered) in the
circuit. For the same, during this procedure the
engineer has to go through text and image dense
technical schematics, the verbose Bill of
Materials(BoM) etc. These are often provided to
him/her as printed documents and are thus not
digitally search able. This proves as a disadvantage
as well as a waste of productive time for the
engineer as he/she has to look up and find specific
combination of numbers and words - substrings -
within an document and identify the location of
multiple such word number combinations iteratively
many number of times.

It is in such a scenario that the application
mentioned in this paper comes to use. The
verification engineer only needs to input an image
of the printed document and he/she can search it
easily for required component names etc, any
number of times easily and efficiently. Thus
locating a component mentioned on the Bill of
Material on the schematic, and thus on the printed
circuit board (PCB) becomes a much easier job for
the engineer. This application thereby increases the
work efficiency of verification engineers and thus
saves time, energy and resources.

V. MISCILLANEOUS APPLICATIONS

The solution can be used for easy searching text in
printed material. It can be a very tiresome activity to
search for a single word among thousands of them

WWW.asianssr.org

Page 3

http://www.asianssr.org/

This is a lot of 12 point text to test the

Asian Journal of Convergence in Technology ocr code and see if it works on all types [
ISSN NO: 2350-1146 LF-5.11 g

he quick brown dog jumped over the
lazy fox. The quick brown dog jJumped
over the lazy fox. The quick brown dog
jumped over the lazy fox. The quick
brown dog jumped over the |lazy fox

in a book or other printed documents. With this
solution all that an user has to do is to enter the
word to be searched for in the application and scan
the document. The application will dynamically

highlight the respective text in the content. This This is a lot of 12 point text to test the
makes it very comfortable and time saving, ocr code and see if it works on all types
improving the work efficiency an user. of file format

The quick brown dog jumped over the

Most of the applications available provides features lazy fox. The ?U'Ck Drown oy Jumped
over the lazy fox. The quick brown dog

like find, find apd replgce, .etc. But there may bp jumped over the lazy fox. The quick
cases where this facility is not available. This brown dog jumped over the lazy fox
solution can be of great usage in such scenarios. As

almost all of the soft copy content is in standard

fonts and not handwritten, this solution could be Fig 5: Test image identifying multiple words
easily used as an alternative there as tesseract is within same text

equipped to deal with exactly such type of data.

In some cases, in a text content, there will be texts
in different fonts and orientations. Text sizes may
also differ. In such cases it will be very difficult to
search and the find feature may also not work. But
since this application uses image processing for
character recognition, it can find texts of any
printed font, size or orientation, making it a robust
solution.

VL. TEST RESULTS

Fig 6. Test Result with non White background and
multiple images

WWW.asianssr.org Page 4

http://www.asianssr.org/

Asian Journal of Convergence in Technology

ISSN NO: 2350-1146 I.F-5.11

Volume 1V Issue 111

Fig 7: Clockwise from top left - Image taken from Mobile
Camera (12MP) of dense text, All detected letters in image
by OCR Engine, The number '22' located and highlighted in
image, The word "Trump" highlighted in image

VII. FUTURE WORK
Future works envisioned for this project include better GUI, a
more optimized OCR engine and more cross platform
usability. Another major area of development would
be to develop this project, currently working on
linux OS desktops to Mobile Phones. The feasibility
of such a move has to be studied in terms of
processing power required and average processing
time for a standard image across OS and hardware
specification. Developing this project as a mobile

application would hugely increase its scope of
usage and ease of access. Making the application
voice interactive can prove to be more comfortable.
Then, instead of typing the word to be searched, a
user need only speak it out before scanning. Going
further, it can also be integrated into cutting edge
technologies such as Smart Glasses like Google
Glass.

WWW.asianssr.org

Page 5

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume IV Issue 111
ISSN NO: 2350-1146 I.F-5.11

VIIL. CONCLUSIONS

The proposed solution can be of huge advantage in
many situations. It is an example of converging
different technologies to make smarter solutions. It
has the capability to revolutionize the work in may
fields, making them more efficient and time saving.
It is clear that the solution is simple and robust.

REFERENCES

11 R. Smith, "An Overview of the Tesseract OCR
Engine," Ninth International Conference on
Document Analysis and Recognition (ICDAR
2007]) Parana,” 2007 6pgp9 629-633. dot:
10.1709/ICDAR.2007.4376991 ,
http://1eeexp10re.1eee.or%/stamp/stamp.%s_??
tp=&arnumber=437699T&isnumber=4376969

121 https://www.python.org/

31 https://pillow.readthedocs.io/en/5.1.x/

41 https://docs.python.org/3/library/tk.html

(5] httos://docs.nvthon.org/2/librarv/os.html

(6] https://pypi.org/project/pytesseract/

(71 https://opensource.google.com/projects/tesseract
8] https://en.wikipedia.org/wiki/Tesseract (softwar

e
o1 https://en.wikipedia.org/wiki/TIFF

ro] https://en.wikipedia.org/wiki/BMP _file format
(1] https://docs.python.org/2/library/sys.html

112] https://www.reviversoft.com/file-extensions/box

WWW.asianssr.org Page 6

http://www.asianssr.org/
https://pypi.org/project/pytesseract/

