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Abstract— This research paper presents the work on the multi
fusion path planning algorithm for Unmanned Ground Vehicle
(UGV), which includes, tasks such as studying various existing
algorithms,  combing  algorithms  for  better  results,
implementing multi fusion path planning algorithm to produce
an  optimal  path  for  UGV  in  a  simulated  environment.  To
determine  collision  free  path  for a  robot  from start  to  goal
position in a workspace comprising of obstacles,  is  the main
challenge  in  the  design  of  an  autonomous  UGV. The  Multi
fusion  Path  planning  algorithm  subsequently  attempts  to
create  free  paths  for  the  UGV  to  travel  in  the  workspace
without colliding with obstacles. Probabilistic roadmap (PRM)
algorithm along with Dijkstra algorithm is used for the UGV
navigation in an environment. Python is used for simulation of
the results.

Keywords— Path planning;  Probabilistic Roadmap  (PRM);
Dijkstra  algorithm; KNN  (K-nearest  neighbor); Unmanned
Ground Vehicle (UGV).

I.  INTRODUCTION 

     Path planning is considered as one of the vital tasks for
any autonomous robot. Sensors plays an important role for
accessibility  of  environmental  and  odometric  information.
This  depends  upon  how  accurate  the  environmental  and
odometric information is attained by the robot. In our study
robot  means  UGV. Path  planning  aims  for  moving  UGV
from their initial position to the goal position by their own
actuators and strategies, and during the process, robots must
always be able to avoid obstacles to maintain safety. Robots
such  as  underwater  robots  [1,2],  wall-climbing  robot  [3],
and micro air vehicles [4-6] have been tested with different
methods. Also, in path planning the robot must reach  the
destination location without colliding with obstacles and the
path must be the shortest. The shortest path is considered as
the time saving constraint  for UGV and the safest path is
considered as the safety constraints for UGV. To meet such
requirement  there  are  many  path  planning  methods  are
already proposed by researchers.
Path  planning  algorithms  are  divided  into  five  categories
[7];  Fig.1  shows  various  categories  of  path  planning
algorithms.

Fig. 1 Categories of path planning algorithms

We have  studied  and  analyzed  sampling-based  algorithm
and node based optimal algorithm from the path planning
taxonomy.

II. SAMPLING BASED ALGORITHMS 

     Sampling-based  path  planning  algorithms,  such  as
Probabilistic  Road  Maps  (PRM)  and  Rapidly-exploring
Random Trees (RRT), have been working well in practice
and  possess  theoretical  guarantees  such  as  probabilistic
completeness.  However,  effort  has  been  devoted  to  the
analysis  of  the  quality  of  the  solution  returned  by  such
algorithms,  e.g.,  as  a  function  of  the  number  of
samples. This  kind  of  methods  needs  some  pre-known
information of the whole workspace, that is, a mathematic
representation to describe the workspace. This kind usually
samples the environment as a set of nodes, or cells, or in
other  forms.  Then  map  the  environment  or  just  search
randomly  to  achieve  a  feasible  path.  Fig.2  shows  the
elements of sampling-based algorithms.
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Fig. 2 Elements of sampling-based algorithms

A. Representation of environment:

In path planning, the UGV moves in a workspace W i.e.,
either in two or three dimensions. The location of a UGV is
represented as a configuration. A  set of all possible
configurations  for a UGV is called a configuration
space. If  configurations have d parameters, the
configuration space is  d-  dimensional.  In each
configuration, the robot occupies some set of points in  a
workspace W.  This set of occupied points in configuration
q is denoted as R(q). Workspace W contains obstacles, n
obstacles denoted by Oi, 1 ≤ i ≤ n. For each Oi there is
a  counterpart  COi in the configuration  space C.  This
configuration space obstacle can be defined as
COi = {q∈ C | R(q) ∩ Oi = 0},

means  that  COi  is  a  set  of  all  configurations  where  the
robot  R  would  collide  with  the  obstacle  Oi.  The free
configuration space can be defined as
C free = C −U COi, 
and it is a set of configurations where the UGV does not
collide with any  of the obstacles. The task in motion
planning  can be defined as finding a free path from
configuration q start to configuration q goal. The path is a
continuous function
τ: [0, 1] → C free,
 where                τ (0) = q start and 
                            τ (1) = q goal.

B. Analysis of Sampling-Based Algorithms

Table 1: Analysis of sampling-based algorithms

We cannot  predict  the  environment  of  UGV  whether  it
operates  in  complex  or  easy  environment,  also  by
considering  advantages  of  replanning  situation  and  multi
query  planner  among  the  various  methods  of  sampling-
based algorithm, we have chosen PRM for our multifusion
algorithm.

C. Probabilistic Roadmap:

     PRMs a r e  s a m p l i n g -based   methods  w h i c h  d o
n o t  t r y  t o  construct  an exact representation of C free.
Instead, they utilize the fact that it is quite easy to check
whether some configuration   is   collision-free   by   using
some   collision  detection  algorithms [1, 2]. With these
algorithms it is also possible to check collisions or a local
path which is some  simple path segment between two
configurations. Using these methods, PRM planners can
build a roadmap that lies entirely in C free. A typical PRM
planner contains the following parts:
 A sampling method to generate new configurations,
 A method to select   neighbor   configurations   from

the roadmap,
 A local  planner to connect configurations  together

with a local path, and 
 An  ending condition which is used to decide when

the roadmap is ready.
The  PRM algorithm works in two phases.  In  the first
phase, the roadmap is constructed and in the second phase
it is used to answer queries. The learning phase is the
most time-consuming part of  PRM planners but after the
roadmap  has been built,  it is very fast to solve the
motion  planning queries. This is very  useful especially
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when multiple  queries must be  solved. This also
distinguishes the PRM  planners from many  other motion
planning algorithms like RRT which often can solve only
one query at a time.

D.   Roadmap construction:
Algorithm  1  s h o w s  h o w  t h e  P R M  m e t h o d
c o n s t r u c t s    a roadmap.

1. V=0
2. E=0
3. Repeat
4. q=a randomly chosen configuration from C free
5. V=VU {q}
6. Nq=all  nearest neighbor configuration of q chosen

from V.
7. For all q’ in Nq do
8. if the local planner ∆ can find a free path between q

& q’ then
9. E=EU{(q,q’)}
10. end if
11. end for
12. until there are enough configurations in V
13. return G

Output:
A roadmap G= (V, E).

Initially the algorithm starts with an empty roadmap. The
main  loop  is  in  between  lines  3–12.  In  line  4,  at  the
beginning  of  one  iteration,  a  free  configuration    q    is
generated   and   in   line   5   this   new configuration is
added to the roadmap as a node.  The free configuration is
generated randomly using uniform sampling method. In line
6, a set of neighbour configurations are chosen for  q  from
the roadmap. We have to select  predetermined number of
the nearest configurations in program.  Then, in lines 7–11,
the algorithm goes through all these neighbours.  For each
neighbour  q0,  a  local  planner  is  used  in  line  8  to  check
whether there is a simple and free path between q and q0. If
the local planner finds a free path, an edge (q, q0) is added
to the roadmap in line 9. We have used kd-tree method for
nearest  neighbour search.  There are different  variations of
the method but it is always based on the binary tree.  In a
typical  kd-tree implementation, the points, which in PRM
planners are the configurations from the roadmap, are stored
to the nodes of the binary tree. Each node stores one point
and each node also divide the space into two partitions by a
plane that goes through the stored point. The plane is used
to divide the remaining points into the sub trees of the node.
The nearest neighbours can now be searched for quickly by
using this structure because it allows to eliminate the large
regions of the search space during the search. The nodes are
added to the roadmap until some ending condition has been
met.   This  ending  condition  is  defined  in  program.  The

roadmap should have a good coverage and connectivity at
the end.

E.   Solving queries:
     Algorithm 2 shows how a roadmap can be used to solve
motion planning query.  As input parameters, the algorithm 

needs a previously constructed roadmap G = (V,  E), a start
configuration  q-start, and a goal configuration  q-goal. The
algorithm tries to connect q-start and q-goal to the roadmap
and  then  find  and  return  a  free  path  between  those
configurations.
1. N-start= all nearest neighbour configuration of q-start

chosen from V.
2. N-goal= all nearest neighbour configuration of q-goal

chosen from V.
3. V=V U {q-start}
4. V=V U {q-goal}
5. For all q’in N-start do
6.      If the local planner can find a free path between

q- start & q’then
7.    E=E U {(q-start,q’)}
8.    End if
9. End for
10. For all q’in N-goal do
11.   If the local planner can find a free path between q-

goal and q’ then
12.   E=E U {(q-goal,q’)}
13.   End if
14. End for
15. P=a shortest path from q-start to q-goal
16. If P is empty then
17. Return not found
18. Else
19. Return P
20. End if

Input:
G= (V, E); the roadmap
q-start; the start configuration
q-goal; the goal configuration
Output:
A shortest path in G from q-start to q-goal or not found if
a path cannot be found.
In lines 1 and 2, the algorithm chooses a set of the nearest
neighbour configurations for both q-start and q-goal.  Then
both configurations are added to the roadmap in lines 3 and
4. Ideally, all   configurations   from   the   roadmap   should
be selected as neighbours to maximize the probability that
q-start  and  q-goal  can  be  connected  to  the  roadmap.  In
practice,  it  is  usually  enough  to  select  only  some of  the
nearest nodes. In lines 5–9, there is a loop that goes through
all  neighbours  for  q-start.  For  each  neighbour  q0,  the
algorithm checks  whether  a  local  planner  can find a  free
path from q-start to q0. If such path exists, an edge (q-start,
q0) is  added to the roadmap. In  lines  10–14, the same is
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done for  q-goal.  The path  that  the  algorithm returns  is  a
sequence  q-start =  v0,  e1,  v1,  e2,  v2. .  .  en,  vn  =  q-goal,
where vi  Ɛ V, 0 ≤ i≤ n and ej ƐE, 1 ≤ j ≤ n. To retrieve the
actual path in C, a local planner ∆ must be used to calculate
local paths for each edge.  The corresponding local path for
edge ej is ∆ (vj-1, vj) and the actual path from q-start to q-

goal can be composed by concatenating all these local paths
together. 

III. NODE BASED OPTIMAL ALGORITHMS:

     Node  based  optimal  algorithms  explore  through  the
decomposed graph. This kind of methods can always find an
optimal path according to the certain decomposition. Figure
3  illustrates  the  typical  elements  of  node  based  optimal
algorithms

Fig. 3 Elements of Node based optimal algorithms

D.  Analysis of node based Algorithms

Table 2: Analysis of node-based optimal algorithms

Among  the  various  methods  of  node-based  optimal
algorithm,  we  have  chosen  Dijkstra  algorithm  by
considering  advantages  of  implementing  for  various
environment. In line 15 of the algorithm 2, we have used
Dijkstra algorithm to find a path between q-start and q-goal
from the roadmap graph.  If the path is found, it is returned.

Otherwise the algorithm returns Not Found which informs
that the path could not be found.

B.   Dijkstra’s algorithm:
     an  algorithm for  finding the  shortest  paths between
nodes in a  graph, which may represent, for example, road
networks, in our case PRM roadmap. The node at which we
are starting be called as initial node. The distance of node Y
be the distance from the  initial node to Y. This algorithm
will assign some initial random distance values and will try 

to  improve them step by step.  Mark all  nodes unvisited.
Create a set of all the unvisited nodes called the unvisited
set. Assign to every node a tentative distance value, set it to
zero for our initial node and to infinity for all other nodes. 

Set  the  initial  node  as  current.  For  the  current  node,
consider all  of its unvisited neighbors  and calculate their
tentative distances through the current node. Compare the
newly calculated tentative distance to the current assigned
value  and  assign  the  smaller  one.  Otherwise,  keep  the
current  value.  When  we  are  done  considering  all  of  the
unvisited neighbors of the current node, mark the current
node  as  visited  and  remove  it  from the  unvisited  set.  A
visited node will never be checked again. If the destination
node has been marked visited or if  the smallest  tentative
distance among the nodes in  the  unvisited  set  is  infinity
then stop. The algorithm has finished. Otherwise, select the
unvisited  node that  is  marked with the smallest  tentative
distance, set it as the new "current node", and go back to
initial  steps.  When  planning  a  route,  it  is  actually  not
necessary to wait until the destination node is "visited" as
above, the algorithm can stop once the destination node has
the smallest tentative distance among all "unvisited" nodes.

 they have been defined in the abstract.  Abbreviations
such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to
be defined.  Do not use abbreviations in the title or heads
unless they are unavoidable.

IV. MULTI FUSION ALGORITHMS

We  multifused  the  PRM  from  Sampling  Based
algorithms  with  Dijkstra’s  algorithm  from  Node  Based
Optimal Algorithms. We simulated multi fused algorithms
using python code. 

V. SIMULATION:
Simulated  results  for  different  ending  conditions  are  as
follows:
A.    N_SAMPLE = 350 # number of sample points

N_KNN =10#number of edges from one sampled point
MAX_EDGE_LEN=30.0 # [m] Maximum edge length
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Fig. 4.  Simulation Result -1.
             probabilistic_road_map_work.py~ start!!
             goal is found!

B.    N_SAMPLE = 500 # number of sample points
N_KNN =10#number of edges from one sampled point
MAX_EDGE_LEN = 30.0# [m] Maximum edge length

Fig. 5.  Simulation Result-2
    
           probabilistic_road_map_work.py~ start!!
           goal is found!

C.    N_SAMPLE = 100 # number of sample points
        N_KNN=20#number of edges from one sampled point

MAX_EDGE_LEN=50.0 # [m] Maximum edge length

            
Fig. 6.  Simulation Result-3

           probabilistic_road_map_work.py~ start!!
            goal is found!

D.    N_SAMPLE = 50 # number of sample points
        N_KNN=20#number of edges from one sampled point

MAX_EDGE_LEN=10.0 # [m] Maximum edge length

           Fig. 7.  Simulation Result-4

            probabilistic_road_map_work.py~ start!!
            Cannot find path

E.    N_SAMPLE = 10000 # number of sample points
        N_KNN=20#number of edges from one sampled point
        MAX_EDGE_LEN = 20.0 #[m]Maximum edge length

           Fig. 8.  Simulation Result-5

           probabilistic_road_map_work.py~ start!!
           goal is found!

F.     N_SAMPLE = 500 # number of sample points
        N_KNN=20#number of edges from one sampled point
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        MAX_EDGE_LEN =20.0# [m] Maximum edge length

           Fig. 9.  Simulation Result-6
           
            probabilistic_road_map_work.py~ start!!
            goal is found!

VI. CONCLUSION
     We carried out simulation for different ending conditions,
simulation  results  of  A &  B  reach  goal  with  sufficient
number of sample points and edge length of 30 m. Results
in  C reaches  goal  with a smaller  number of  samples  and
increased edge length. Results in D not able to reach goal
because of less samples and less edge length. In E though it
reaches goal but it took more time to find a path due to large
number of samples. In this type of multifusion 

of algorithm we should not give too a smaller number of
samples and too a greater number of samples. 
Practically  we tried several  times  by giving  500 samples
points, 20 number of edges and edge length of 20 m. With
this ending condition it able to find a path to reach a goal
without fail. It is very difficult to solve the path planning
problem exactly especially if the configuration space is
complex and high-dimensional.  Therefore, the problem is
usually solved with approximate methods in practice.
In  this  paper,  a  path  planning  method  based  on  a
Multifusion of PRM & Dijkstra’s algorithm is carried out to
find a most safe path for UGV of particular dimension. With
implementation  of  proposed  method,  the  robot  does  not
collide with the obstacles. However same algorithm can be
extended for the dynamic obstacle by using roadmap with
cycles with A* and D* algorithm.
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