
Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

MULTI FUSION PATH PLANNING
ALGORITHM FOR UGV

Sharana Basava S Madari, DM, BEL, A. Thirija Sharmila, M (SRS), BEL and Adlinge S D, SO, DIAT

Abstract— This research paper presents the work on the multi
fusion path planning algorithm for Unmanned Ground Vehicle
(UGV), which includes, tasks such as studying various existing
algorithms, combing algorithms for better results,
implementing multi fusion path planning algorithm to produce
an optimal path for UGV in a simulated environment. To
determine collision free path for a robot from start to goal
position in a workspace comprising of obstacles, is the main
challenge in the design of an autonomous UGV. The Multi
fusion Path planning algorithm subsequently attempts to
create free paths for the UGV to travel in the workspace
without colliding with obstacles. Probabilistic roadmap (PRM)
algorithm along with Dijkstra algorithm is used for the UGV
navigation in an environment. Python is used for simulation of
the results.

Keywords— Path planning; Probabilistic Roadmap (PRM);
Dijkstra algorithm; KNN (K-nearest neighbor); Unmanned
Ground Vehicle (UGV).

I. INTRODUCTION

 Path planning is considered as one of the vital tasks for
any autonomous robot. Sensors plays an important role for
accessibility of environmental and odometric information.
This depends upon how accurate the environmental and
odometric information is attained by the robot. In our study
robot means UGV. Path planning aims for moving UGV
from their initial position to the goal position by their own
actuators and strategies, and during the process, robots must
always be able to avoid obstacles to maintain safety. Robots
such as underwater robots [1,2], wall-climbing robot [3],
and micro air vehicles [4-6] have been tested with different
methods. Also, in path planning the robot must reach the
destination location without colliding with obstacles and the
path must be the shortest. The shortest path is considered as
the time saving constraint for UGV and the safest path is
considered as the safety constraints for UGV. To meet such
requirement there are many path planning methods are
already proposed by researchers.
Path planning algorithms are divided into five categories
[7]; Fig.1 shows various categories of path planning
algorithms.

Fig. 1 Categories of path planning algorithms

We have studied and analyzed sampling-based algorithm
and node based optimal algorithm from the path planning
taxonomy.

II. SAMPLING BASED ALGORITHMS

 Sampling-based path planning algorithms, such as
Probabilistic Road Maps (PRM) and Rapidly-exploring
Random Trees (RRT), have been working well in practice
and possess theoretical guarantees such as probabilistic
completeness. However, effort has been devoted to the
analysis of the quality of the solution returned by such
algorithms, e.g., as a function of the number of
samples. This kind of methods needs some pre-known
information of the whole workspace, that is, a mathematic
representation to describe the workspace. This kind usually
samples the environment as a set of nodes, or cells, or in
other forms. Then map the environment or just search
randomly to achieve a feasible path. Fig.2 shows the
elements of sampling-based algorithms.

 www.asianssr.org 1

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

Fig. 2 Elements of sampling-based algorithms

A. Representation of environment:

In path planning, the UGV moves in a workspace W i.e.,
either in two or three dimensions. The location of a UGV is
represented as a configuration. A set of all possible
configurations for a UGV is called a configuration
space. If configurations have d parameters, the
configuration space is d- dimensional. In each
configuration, the robot occupies some set of points in a
workspace W. This set of occupied points in configuration
q is denoted as R(q). Workspace W contains obstacles, n
obstacles denoted by Oi, 1 ≤ i ≤ n. For each Oi there is
a counterpart COi in the configuration space C. This
configuration space obstacle can be defined as
COi = {q∈ C | R(q) ∩ Oi = 0},

means that COi is a set of all configurations where the
robot R would collide with the obstacle Oi. The free
configuration space can be defined as
C free = C −U COi,
and it is a set of configurations where the UGV does not
collide with any of the obstacles. The task in motion
planning can be defined as finding a free path from
configuration q start to configuration q goal. The path is a
continuous function
τ: [0, 1] → C free,
 where τ (0) = q start and
 τ (1) = q goal.

B. Analysis of Sampling-Based Algorithms

Table 1: Analysis of sampling-based algorithms

We cannot predict the environment of UGV whether it
operates in complex or easy environment, also by
considering advantages of replanning situation and multi
query planner among the various methods of sampling-
based algorithm, we have chosen PRM for our multifusion
algorithm.

C. Probabilistic Roadmap:

 PRMs a r e s a m p l i n g -based methods w h i c h d o
n o t t r y t o construct an exact representation of C free.
Instead, they utilize the fact that it is quite easy to check
whether some configuration is collision-free by using
some collision detection algorithms [1, 2]. With these
algorithms it is also possible to check collisions or a local
path which is some simple path segment between two
configurations. Using these methods, PRM planners can
build a roadmap that lies entirely in C free. A typical PRM
planner contains the following parts:
 A sampling method to generate new configurations,
 A method to select neighbor configurations from

the roadmap,
 A local planner to connect configurations together

with a local path, and
 An ending condition which is used to decide when

the roadmap is ready.
The PRM algorithm works in two phases. In the first
phase, the roadmap is constructed and in the second phase
it is used to answer queries. The learning phase is the
most time-consuming part of PRM planners but after the
roadmap has been built, it is very fast to solve the
motion planning queries. This is very useful especially

 www.asianssr.org 2

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

when multiple queries must be solved. This also
distinguishes the PRM planners from many other motion
planning algorithms like RRT which often can solve only
one query at a time.

D. Roadmap construction:
Algorithm 1 s h o w s h o w t h e P R M m e t h o d
c o n s t r u c t s a roadmap.

1. V=0
2. E=0
3. Repeat
4. q=a randomly chosen configuration from C free
5. V=VU {q}
6. Nq=all nearest neighbor configuration of q chosen

from V.
7. For all q’ in Nq do
8. if the local planner ∆ can find a free path between q

& q’ then
9. E=EU{(q,q’)}
10. end if
11. end for
12. until there are enough configurations in V
13. return G

Output:
A roadmap G= (V, E).

Initially the algorithm starts with an empty roadmap. The
main loop is in between lines 3–12. In line 4, at the
beginning of one iteration, a free configuration q is
generated and in line 5 this new configuration is
added to the roadmap as a node. The free configuration is
generated randomly using uniform sampling method. In line
6, a set of neighbour configurations are chosen for q from
the roadmap. We have to select predetermined number of
the nearest configurations in program. Then, in lines 7–11,
the algorithm goes through all these neighbours. For each
neighbour q0, a local planner is used in line 8 to check
whether there is a simple and free path between q and q0. If
the local planner finds a free path, an edge (q, q0) is added
to the roadmap in line 9. We have used kd-tree method for
nearest neighbour search. There are different variations of
the method but it is always based on the binary tree. In a
typical kd-tree implementation, the points, which in PRM
planners are the configurations from the roadmap, are stored
to the nodes of the binary tree. Each node stores one point
and each node also divide the space into two partitions by a
plane that goes through the stored point. The plane is used
to divide the remaining points into the sub trees of the node.
The nearest neighbours can now be searched for quickly by
using this structure because it allows to eliminate the large
regions of the search space during the search. The nodes are
added to the roadmap until some ending condition has been
met. This ending condition is defined in program. The

roadmap should have a good coverage and connectivity at
the end.

E. Solving queries:
 Algorithm 2 shows how a roadmap can be used to solve
motion planning query. As input parameters, the algorithm

needs a previously constructed roadmap G = (V, E), a start
configuration q-start, and a goal configuration q-goal. The
algorithm tries to connect q-start and q-goal to the roadmap
and then find and return a free path between those
configurations.
1. N-start= all nearest neighbour configuration of q-start

chosen from V.
2. N-goal= all nearest neighbour configuration of q-goal

chosen from V.
3. V=V U {q-start}
4. V=V U {q-goal}
5. For all q’in N-start do
6. If the local planner can find a free path between

q- start & q’then
7. E=E U {(q-start,q’)}
8. End if
9. End for
10. For all q’in N-goal do
11. If the local planner can find a free path between q-

goal and q’ then
12. E=E U {(q-goal,q’)}
13. End if
14. End for
15. P=a shortest path from q-start to q-goal
16. If P is empty then
17. Return not found
18. Else
19. Return P
20. End if

Input:
G= (V, E); the roadmap
q-start; the start configuration
q-goal; the goal configuration
Output:
A shortest path in G from q-start to q-goal or not found if
a path cannot be found.
In lines 1 and 2, the algorithm chooses a set of the nearest
neighbour configurations for both q-start and q-goal. Then
both configurations are added to the roadmap in lines 3 and
4. Ideally, all configurations from the roadmap should
be selected as neighbours to maximize the probability that
q-start and q-goal can be connected to the roadmap. In
practice, it is usually enough to select only some of the
nearest nodes. In lines 5–9, there is a loop that goes through
all neighbours for q-start. For each neighbour q0, the
algorithm checks whether a local planner can find a free
path from q-start to q0. If such path exists, an edge (q-start,
q0) is added to the roadmap. In lines 10–14, the same is

 www.asianssr.org 3

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

done for q-goal. The path that the algorithm returns is a
sequence q-start = v0, e1, v1, e2, v2. . . en, vn = q-goal,
where vi Ɛ V, 0 ≤ i≤ n and ej ƐE, 1 ≤ j ≤ n. To retrieve the
actual path in C, a local planner ∆ must be used to calculate
local paths for each edge. The corresponding local path for
edge ej is ∆ (vj-1, vj) and the actual path from q-start to q-

goal can be composed by concatenating all these local paths
together.

III. NODE BASED OPTIMAL ALGORITHMS:

 Node based optimal algorithms explore through the
decomposed graph. This kind of methods can always find an
optimal path according to the certain decomposition. Figure
3 illustrates the typical elements of node based optimal
algorithms

Fig. 3 Elements of Node based optimal algorithms

D. Analysis of node based Algorithms

Table 2: Analysis of node-based optimal algorithms

Among the various methods of node-based optimal
algorithm, we have chosen Dijkstra algorithm by
considering advantages of implementing for various
environment. In line 15 of the algorithm 2, we have used
Dijkstra algorithm to find a path between q-start and q-goal
from the roadmap graph. If the path is found, it is returned.

Otherwise the algorithm returns Not Found which informs
that the path could not be found.

B. Dijkstra’s algorithm:
 an algorithm for finding the shortest paths between
nodes in a graph, which may represent, for example, road
networks, in our case PRM roadmap. The node at which we
are starting be called as initial node. The distance of node Y
be the distance from the initial node to Y. This algorithm
will assign some initial random distance values and will try

to improve them step by step. Mark all nodes unvisited.
Create a set of all the unvisited nodes called the unvisited
set. Assign to every node a tentative distance value, set it to
zero for our initial node and to infinity for all other nodes.

Set the initial node as current. For the current node,
consider all of its unvisited neighbors and calculate their
tentative distances through the current node. Compare the
newly calculated tentative distance to the current assigned
value and assign the smaller one. Otherwise, keep the
current value. When we are done considering all of the
unvisited neighbors of the current node, mark the current
node as visited and remove it from the unvisited set. A
visited node will never be checked again. If the destination
node has been marked visited or if the smallest tentative
distance among the nodes in the unvisited set is infinity
then stop. The algorithm has finished. Otherwise, select the
unvisited node that is marked with the smallest tentative
distance, set it as the new "current node", and go back to
initial steps. When planning a route, it is actually not
necessary to wait until the destination node is "visited" as
above, the algorithm can stop once the destination node has
the smallest tentative distance among all "unvisited" nodes.

 they have been defined in the abstract. Abbreviations
such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have to
be defined. Do not use abbreviations in the title or heads
unless they are unavoidable.

IV. MULTI FUSION ALGORITHMS

We multifused the PRM from Sampling Based
algorithms with Dijkstra’s algorithm from Node Based
Optimal Algorithms. We simulated multi fused algorithms
using python code.

V. SIMULATION:
Simulated results for different ending conditions are as
follows:
A. N_SAMPLE = 350 # number of sample points

N_KNN =10#number of edges from one sampled point
MAX_EDGE_LEN=30.0 # [m] Maximum edge length

 www.asianssr.org 4

https://en.wikipedia.org/wiki/Algorithm
http://www.asianssr.org/
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Shortest_path_problem

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

Fig. 4. Simulation Result -1.
 probabilistic_road_map_work.py~ start!!
 goal is found!

B. N_SAMPLE = 500 # number of sample points
N_KNN =10#number of edges from one sampled point
MAX_EDGE_LEN = 30.0# [m] Maximum edge length

Fig. 5. Simulation Result-2

 probabilistic_road_map_work.py~ start!!
 goal is found!

C. N_SAMPLE = 100 # number of sample points
 N_KNN=20#number of edges from one sampled point

MAX_EDGE_LEN=50.0 # [m] Maximum edge length

Fig. 6. Simulation Result-3

 probabilistic_road_map_work.py~ start!!
 goal is found!

D. N_SAMPLE = 50 # number of sample points
 N_KNN=20#number of edges from one sampled point

MAX_EDGE_LEN=10.0 # [m] Maximum edge length

 Fig. 7. Simulation Result-4

 probabilistic_road_map_work.py~ start!!
 Cannot find path

E. N_SAMPLE = 10000 # number of sample points
 N_KNN=20#number of edges from one sampled point
 MAX_EDGE_LEN = 20.0 #[m]Maximum edge length

 Fig. 8. Simulation Result-5

 probabilistic_road_map_work.py~ start!!
 goal is found!

F. N_SAMPLE = 500 # number of sample points
 N_KNN=20#number of edges from one sampled point

 www.asianssr.org 5

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

 MAX_EDGE_LEN =20.0# [m] Maximum edge length

 Fig. 9. Simulation Result-6

 probabilistic_road_map_work.py~ start!!
 goal is found!

VI. CONCLUSION
 We carried out simulation for different ending conditions,
simulation results of A & B reach goal with sufficient
number of sample points and edge length of 30 m. Results
in C reaches goal with a smaller number of samples and
increased edge length. Results in D not able to reach goal
because of less samples and less edge length. In E though it
reaches goal but it took more time to find a path due to large
number of samples. In this type of multifusion

of algorithm we should not give too a smaller number of
samples and too a greater number of samples.
Practically we tried several times by giving 500 samples
points, 20 number of edges and edge length of 20 m. With
this ending condition it able to find a path to reach a goal
without fail. It is very difficult to solve the path planning
problem exactly especially if the configuration space is
complex and high-dimensional. Therefore, the problem is
usually solved with approximate methods in practice.
In this paper, a path planning method based on a
Multifusion of PRM & Dijkstra’s algorithm is carried out to
find a most safe path for UGV of particular dimension. With
implementation of proposed method, the robot does not
collide with the obstacles. However same algorithm can be
extended for the dynamic obstacle by using roadmap with
cycles with A* and D* algorithm.

Acknowledgment
The authors wish to acknowledge Mr. Manoj Jain,

Chief Scientist of CRL, BEL, Bangalore, Mr. Srivathsa M.
R, GM, NS-2 and CRL Robotics Team for their continuous
motivation and guidance.

References
[1] N. K. Yilmaz, C. Evangelinos, P. F. J. Lermusiaux, and N. M.

Patrikalakis, “Path planning of autonomous underwater vehicles for
adaptive sampling using mixed integer linear programming,”IEEE
Journal of Oceanic Engineering,vol.33,no. 4,pp.522–537,2008.

[2] M. P. Aghababa, “3D path planning for underwater vehicles using
five evolutionary optimization algorithms avoiding static and
energetic obstacles,” Applied Ocean Research, vol. 38, pp. 48–
62,2012.

[3] R.Yue, J.Xiao, S.L.Joseph, and S.Wang, “Modeling and path planning
of the city-climber robot part II: 3D path planning using mixed
integer linear programming,” in Proceedings of the IEEE
International Conference on Robotics and Biomimetics (ROBIO ’09),
vol. 6, pp. 2391–2396, Guilin, China, December 2009.

[4] F.Yan,Y.-S.Liu,andJ.-.Xiao,“Pathplanningincomplex3D environments
using a probabilistic roadmap method,” International Journal of
Automation and Computing,vol.10,no.6,pp. 525–533,2013.

[5] H. Duan, Y. Yu, X. Zhang, and S. Shao, “Three-dimension path
planning for UCAV using hybrid meta-heuristic ACO-DE algorithm,”
Simulation Modelling Practice and Theory, vol. 18, no.8, pp.1104–
1115,2010.

[6] F. Schler, 3d path planning for autonomous aerial vehicles in
constrained spaces [Ph.D. thesis], Department of Electronic Systems,
Faculty of Engineering and Science, Aalborg University, Aalborg,
Denmark,2012.

[7] ” Survey of Robot 3D Path Planning Algorithms”

LiangYang, JuntongQi, DaleiSong, JizhongXiao, JiandaHan and
YongXia

BIOGRAPHY

Sharana Basava S Madari has received
his B.E degree in Electronics and
Communications from VTU, Belgaum.
He joined Bharath Electronics Limited,

Bangalore,India in the year 2007 and he is working as the
Deputy Manager . Currently he is pursuing MTech in
Robotics from DIAT, Pune. His areas of interest includes
path planning for autonomous UGV, Machine learning,
Artificial intelligence.

A.Thirija Sharmila has received her
M.E degree in VLSI Systems from
National Institute of Technology,
Tiruchirapalli. She is working as
Member (Senior Research Staff) at
Central Research Laboratory of Bharat
Electronics Limited, Bangalore, India

since 2001. She had worked in areas covering bulk
encryption, SDH, OTU and LTE technologies. Currently
she is working in the field of Robotics and Artificial
Intelligence.

 www.asianssr.org 6

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume V Issue I
ISSN NO: 2350-1146 I.F-5.11

Sudam D Adlinge Received ME degree
in Electronics Instrumentation from
Andhra University, Visakhapatnam,
Presently he is working as a Scientific
Officer at DIAT, Pune. Currently he is
pursuing PHD in Instrumentation and
Control Engineering from Pune

University. He has worked for Indian Navy, DRDO and
Mahindra Defence Naval System. His areas of interest are
Non linear control systems, sensors for defence Robotics,
unmanned sea surface vehicles and Autonomous underwater
vehicles.

 www.asianssr.org 7

http://www.asianssr.org/

	I. Introduction
	II. sampling based algorithms
	A. Representation of environment:
	B. Analysis of Sampling-Based Algorithms
	C. Probabilistic Roadmap:
	D. Analysis of node based Algorithms

	IV. Multi Fusion Algorithms

