

Analytical Analysis of Relationship among Modal Parameters of Rigid Flange Coupling

A.Asma Shaheen Shaikh, *P.G. Research Scholar, Shree Ramchandra College of Engineering, Pune, B.Dr. Santosh Taji, Professor & Head of Department, Govt. Polytechnic Ahmednagar and C.Prof. Avinash Verma,, Assistant Professor, Shree Ramchandra College of Engineering, Pune,*

Abstract—As a structural analysis is not enough for safe, efficient and durable design of coupling. Therefore modal analysis is conducted to analyze effect of material damping, rotational speed, as well as design of coupling in order to resonance. Though modal analysis system mode shape, natural frequency can be predicted. Determination of natural frequency is helpful to operate system at safer external frequencies to occurrence of resonance. The study has been undertaken to investigate the relationship among modal parameters of rigid flange coupling to optimize the design. The effect on modal parameters of rigid flange coupling having fixed support at the two ends is studied by varying the diameter, material and power to the shaft. Analytical analysis has been carried out referring the standard procedure of design and vibration.

Keywords—*Modal Analysis, Natural Frequency, Vibrations.*

I. INTRODUCTION

The couplings are widely used in various engineering applications for power transmission and to increase shaft length to achieve intended function. Shafts are usually available in length varying from 6 to 10 meters, so that they can be easily handled, transported and precisely manufactured. But in most of engineering applications shafts of large lengths are required to transmit the torque which can be obtained by joining two or more shafts in order to obtain the required length (Patel, Oza, Gohel, Parmar, & Kadivar, 2014) & (Johnson, 1996).

The two elementary rigid coupling styles are machined set-screw, for smaller shafts, and ribbed, two-piece cast, for larger and higher horsepower applications. The ribbed style, all but unchanged, remains the coupling of choice for large shafts, but it is uneconomical for shafts two inches or less in diameter. The machined, set-screw coupling is basically a cylinder with a key-way and set screws. From a simplistic viewpoint, this is a sound design, but in practice its shortcomings become evident. It can loosen under vibration, and set screws can leave dents or dimples in the shaft or key-way, deforming the surface so that adjusting or removing the coupling becomes difficult.

As coupling is highly important component of rotating system because its failure causes disaster of the system. There are several ways which can become cause of coupling failure such as excessive loading, misalignment, unbalance in system

component and resonance. Therefore, coupling should be designed to withstand all these failure conditions. In this research, dynamic structural analysis is conducted to analyze structural integrity.

II. PROBLEM STATEMENT

Basically flange coupling is the very important part in the power transmission system and it is required to design it statically and dynamically considering the weight and other parameters. Many of the time couplings will fail because of vibration and also because of strength problem. So it is required to optimize different parameters of coupling and reduce the vibrations and is required to check for misalignment and unbalance for better performance.

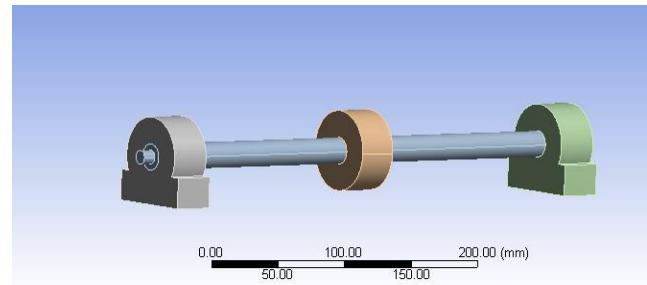


Fig.1 CAD Model for Proposed Experimental Setup for Modal Analysis

III. ANALYTICAL SOLUTION

Permissible Stresses^[08]

$$\text{Shaft: } \sigma = \frac{S_{sy}}{f_s} = \frac{0.5S_{yt}}{f_s}$$

$$\text{Keys: } \sigma = \frac{S_{sy}}{f_s} = \frac{0.5S_{yt}}{f_s}$$

Compressive Stress^[08]

$$\text{Shaft } \sigma_c = \frac{S_{yc}}{f_s} = \frac{1.5 S_{yt}}{f_s}$$

$$\text{Flanges } \sigma_c = \frac{S_u}{f_s} = \frac{0.5 S_{ut}}{f_s}$$

Diameter of Shaft^[08]

Taking into consideration service factor of 3, the design torque is calculated by

$$Mt = \frac{60 \times 10^6 \times KW}{2\pi N} \times 1.5 \text{ N-mm}$$

$$T = \frac{16Mt}{\pi d^3}; \quad d^3 = \frac{16Mt}{\pi T}; \quad d = \sqrt[3]{\frac{16Mt}{\pi T}}$$

Dimensions of Flanges^[08]

$$d_h = 2d \quad l_h = 1.5d \quad D = 3d \quad t = 0.5d \quad t_1 = 0.25d$$

$$d_r = (4d + 2t_1)$$

Static Deflection under horizontal shaft position^[09]

$$\delta = \frac{WI^3}{192EI}$$

Natural Frequency

$$W_n = \sqrt{\frac{g}{2}}$$

IV. RESULT

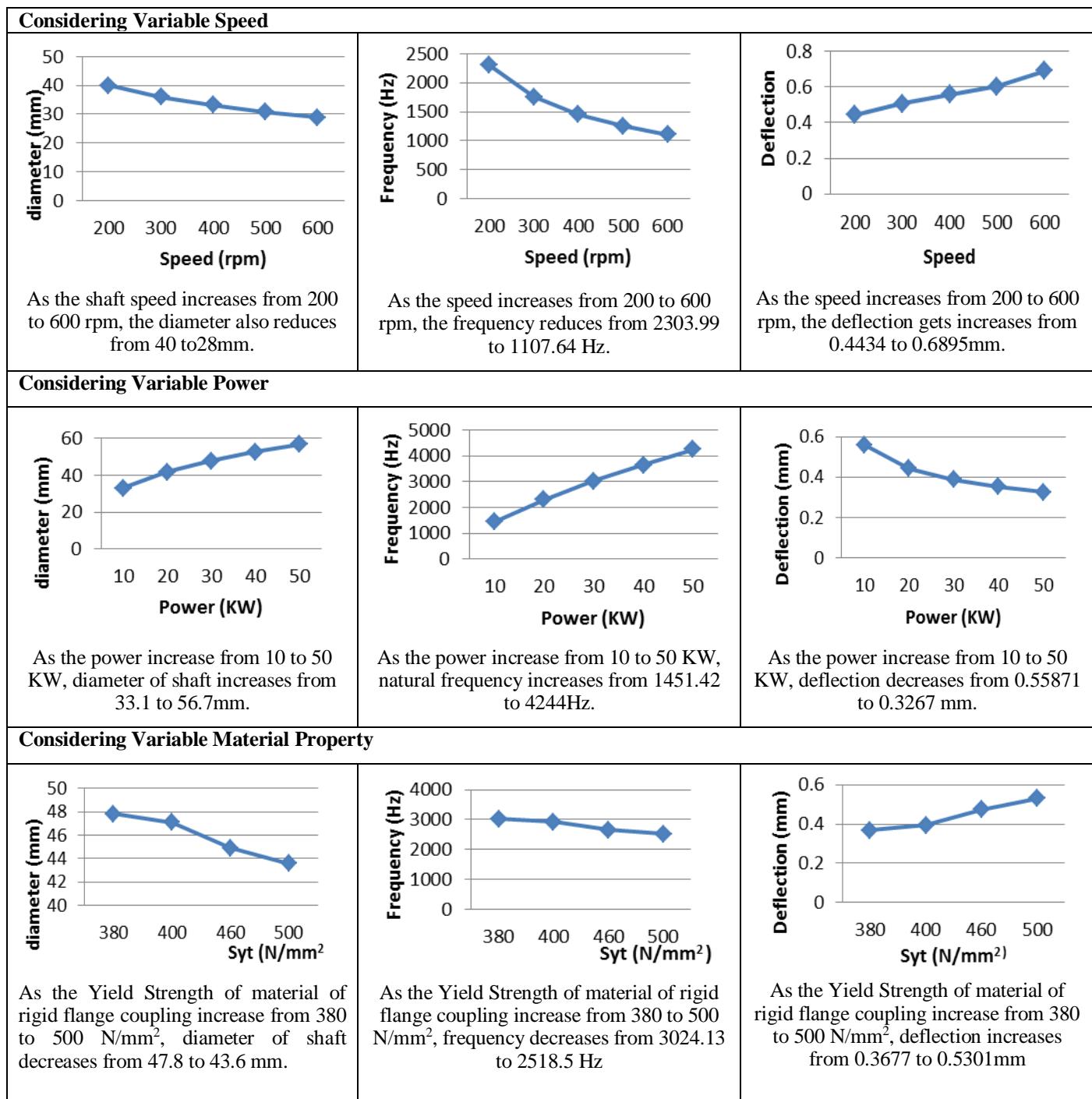
Results have been calculated using above equations.

Table 1: Computation of Modal Parameters considering Constant Power, Material and Variable Speed

Sr.No	P	N	S _{yt}	S _{ut}	Mt	T	d	d _h	l _h	D	t	t ₁	d _r	d _o	CJ	λ _{MAX}
	KW	rpm	N/mm ²	N/mm ²	N.mm	N/mm ²	mm	mm	mm	mm	mm	mm	mm	mm	Hz	mm
1	10	200	400	200	7.160×10 ⁵	50	40	83.5	62.06	125	20.19	10.4	62.6	188	2303.99	0.4434
2	10	300	400	200	4.774×10 ⁵	50	36	73.01	54.75	109.5	18.2	9.1	54.75	164.2	1758.28	0.5076
3	10	400	400	200	3.581×10 ⁵	50	33.2	66.3	49.7	99.5	16.5	8.2	49.1	149.3	1451.42	0.5587
4	10	500	400	200	2.864×10 ⁵	50	30.7	61.58	46.18	92.37	15.39	7.69	46.18	138.5	1250.8	0.6018
5	10	600	400	200	2.387×10 ⁵	50	28.8	57.95	43.46	86.92	14.48	7.24	43.46	130.6	1107.64	0.6895

Table 2: Computation of Modal Parameters considering Constant Speed, Material and Variable Power

SR.NO	P	N	S _{yt}	S _{ut}	Mt	T	d	d _h	l _h	D	t	t ₁	d _r	d _o	CJ	λ _{MAX}
	KW	rpm	N/mm ²	N/mm ²	N.mm	N/mm ²	mm	mm	mm	mm	mm	mm	mm	mm	Hz	mm
1	10	400	400	200	3.582×10 ⁵	50	33.1	66.33	49.75	99.5	16.58	8.29	49.75	149	1451.42	0.5587
2	20	400	400	200	7.16×10 ⁵	50	41.7	83.57	62.68	125.3	20.69	10.4	62.6	188	2303.99	0.4434
3	30	400	400	200	1.07×10 ⁶	50	47.8	95.67	71.75	143.5	23.91	11.95	71.75	215	3019.09	0.3873
4	40	400	400	200	1.43×10 ⁶	50	52.6	105	78.97	157.9	26.32	13.16	78.98	236	3657.37	0.3519
5	50	400	400	200	1.8 ×10 ⁶	50	56.7	113	85	170	28.35	14.17	85.07	255.2	4244	0.3267


Table 3: Computation of Modal Parameters considering Constant Power, Speed and Variable Material Properties

SR.NO	P	N	S _{yt}	S _{ut}	Mt	T	d	d _h	l _h	D	t	t ₁	d _r	d _o	CJ	λ _{MAX}
	KW	rpm	N/mm ²	N/mm ²	N.mm	N/mm ²	mm	mm	mm	mm	mm	mm	mm	mm	Hz	mm
1	50	700	380	200	1.02 ×10 ⁶	47.5	47.8	95.75	71.81	143.6	23.93	11.96	17.81	215.4	3024.13	0.3677
2	50	700	400	200	1.023 ×10 ⁶	50	47.1	94.13	70.59	141.2	23.5	11.7	70.59	211.7	2922.47	0.3937
3	50	700	460	200	1.023 ×10 ⁶	57.5	44.9	89.84	67.38	134.7	22.46	17.2	67.38	202.15	2662.47	0.4743

4	50	700	500	200	1.023×10^6	62.5	43.6	87.38	65.53	131.1	21.84	10.92	62.53	196.61	2518.5	0.5301
---	----	-----	-----	-----	---------------------	------	------	-------	-------	-------	-------	-------	-------	--------	--------	--------

A. Analysing Result

By analyzing the modal parameters, the result have been plotted to define relationship among different parameters.

B. Conclusion

After studying the relationship among different modal parameters these can be concluded that as the speed increases the diameter of flange coupling reduces, resulting in decrease in natural frequency and increase in deflection. Same phenomena are observed when material property is varied. When power is increased, the diameter and natural frequency increases but there is decrease in deflection. This can also be concluded that there is inverse relationship among natural frequency and deflection.

References

- [1] V. Hariharan and P.S.S. Srinivasan, (2010) Vibrational Analysis of Flexible Coupling by Considering Unbalance, World Applied Science Journal 8(8): 1022-1031,2010
- [2] Ronak Prajapati & Dr. Anand Parey, (2011), Effect of Coupling Type on Rotor Vibrations, World Applied Science Journal 8(8): 1022-1031,2010
- [3] Abolreza Askarian and S.M. Reza Hashemi, (2007), Effect of Axial Force Unbalanced and Coupling Misalignment on Vibrations of a rotor gas turbine, 14th International Congress on Sound Vibration, Australia 2007.
- [4] A.S. Sekhar and B.S. Prabhu, (1994), Effect of Coupling Misalignment on Vibration of Rotating Machinery, Journal of Sound and Vibration, (1995) 185(4), 655-671
- [5] Ankur Saxena, et.al., (2016), Dynamic Analysis of Multi-mesh Geared Rotor System using Modal Analysis, 978-1-5090-2778-1/16, IEEE
- [6] Sekhar, A. S., & Prabhu, B. S. (1995). Effects of coupling misalignment on vibrations of rotating machinery. Journal of Sound and Vibration, 185(4), 655-671.
- [7] Veale, K. L., & Roberts, L. W. (2011). Efficiency management within an industrial environment. Paper presented at the Industrial Engineering and Engineering Management (IE&EM), 2011 IEEE 18Th International Conference on 3-5 Sept. 2011.
- [8] V.B. Bhandari, Design of Machine Elements,ISBN: 0-07-0681791-1 (978-0-07-0681798)
- [9] Mechanical Vibration and Noise Engineering, A.G. Ambekar, PHI Publications,Delhi