Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1./F-2.71

Yolume II, Issue IJ

Automatic Test Data Generation of Web Services
through XML Schema

Abhishek Kumar
School of Computer Engineering
KIT University, Bhubaneswar
Orissa, India
abhikumar695@gmail.com

Abstract— Service-oriented architecture (SOA) is an IT
architectural style that supports service-orientation. Service-
Orientation represents a way of thinking about business and IT.
SOA removed the gap between software and business.The Web
service is the common technology to implement SOA. This paper
proposes an automatic test data generation approach of web
services through XML schema. Our proposed approach ensures
the traceability of each element presents in the XML schema by
using XML tree table structure. Further, itidentifies the
complexity of the nodes and use the propose algorithm to
generate the test data.

Keywords—SOA; Web Services; Test Data Generation;XML
Schema

l. INTRODUCTION

Today,large enterprise is going through business
transformation and they are adopting the service based IT
model. SOA provides solutions for integrating diverse systems
that support interoperability, loose coupling and reuse. In SOA
based application services may invoke other services to full-
fill client needs. Among these services, some services may
evolve. This dynamic and adaptive nature of SOA makes
major concerns about its reliability and fault-free
implementation. So, testing is necessary for SOA based
application. However, the SOA testing approach is completely
different from traditional testing approach. In traditional
testing approach test location is centralized and testing is
mostly done by software provider. There is offline regression
testing and static test case profiling. But, SOA testing
approach supports collaborative testing. Here, verification is
done among the service providers, service brokers and clients
in a collaborative way. In SOA testing, testing location should
be distributed, remote, multi-agent and multi-phase. SOA
testing supports online regression testing where data collected
dynamically. Reliability is ensured by dynamic profiling and
group testing.

Manual test case generation is time consuming and these
test cases lose their usability after some time because services
are dynamically published, bound, invoked and integrated.
Due to this feature quality of service (QoS) can be achieved

WWW.AS1anssy. oryg

Akhilesh Kumar Pandey
School of Computer Engineering
KHT University, Bhubaneswar
Orissa, India
infoakhileshpandey@gmail.com

Farahnaz Rezaeian Zade
Fooland Institute Of Technology
FoolandShahr
Isfahan, Iran
fr.rezaeeian@gmail.com

only if test cases can be automatically generated and testing is
executed, monitored and analyzed at run time.

The Web service is based on open standards such as HTTP

and XML-based protocols including SOAP andWSDL,
Webservices are hardware, programming language, and
operatingsystem independent. Web services are powered by
XML and three other core technologies: WSDL, SOAP, and
UDDI. Before building a Web service, its developers create its
definition in the form of a WSDL document that describes the
service's location on the Web and the functionality the service
provides. Information about the service may then be entered in
a UDDI registry, which allows Web service consumers to
search for and locate the services they need. Web service
provides several technological and business benefits [3].
XML schema defines the data types and structures of web
service documents. An XML schema is the information source
for the generation of test data. Data type definition (DTD) as
the schema language defining the XML document structure.
The data type definition (DTD) document contains the rules
and relationships between the elements. In XML schema data
type could be classified into primitive data type and derived
data type.Primitive data types contain string, boolean, float,
double, duration, time, date, gyearMonth, gYear, gMonthDay,
gDay, gMonth,hexBinary, anyURI, QNameand NOTATION
[6]. Derived data types contain normalizedString, token,
language,Name, ID,integer,nonPositivelnteger,nonNegativeln-
eger, long,int,short,byte,unsignint, unsignShort [2]. We can
use various XSD constraints to customize our test data.
MaxLength, minLength, maxExclusive, mininclusive,
whitespace, enumeration etc. are some XSD constraints. For
example, maxLengthis used to specify the maximum number
of characters. Similarly, minLength specifies the minimum
number of characters. maxInclusive specify the upper bound
where as mininclusive specify the lower bound. Whitespace
can be used to handle spaces, tab and line feed. Enumeration
defines the acceptable value list. We can customize our test
data by applying various XSD constraints in XML instances.

Il. RELATED WORK

Offutt et al. [1] Present new approach to test web service
based on data perturbation. Data perturbation is a process to

Mail: asianjournalzo15@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1./F-2.71

modify request message, resending the modified request
message and analyze the response message for correct
behavior. Here, data perturbation is used to test peer-to-peer
interaction between service. Two methods are introduced
related to data perturbation: data value perturbation and
interaction perturbation. This approach is applicable only
between two components at a time. Tsai et al. [7] Compare
traditional software testing and web service testing and
propose web service group testing (WSGT) technique to test
composite services. WSGT can be used at each level of web
service testing to rank the unit web service or composite web
service at that level. In WSGT, the voting service can
automatically generate an oracle for each input according to
majority principle. Bai et al. [4] Generate test cases of
individual service automatically based on the WSDL. WSDL
carries the data transmission information and interface
operation information about a service. Here, test data
generation and test operation generation are two perspectives
to generate test cases. Test data are generated by analyzing the
message data type according to XML schema syntax and test
operation generation is based on operation dependency
analysis. Tsai et al. [8] Propose several testability evolution
criteria for SOA software. To evaluate the support to test SOA
software these evaluation criteria serve as a reference for both
service providers and application builders. Zhang et al. [5]
Extends UML 2.0 activity diagram to describe the syntax and
behaviors of BPEL. This paper map BPEL primitive activity
to UML 2.0 activity diagram. Next, mapping done from BPEL
structure activity to UML 2.0 activity diagram. This paper
discusses the feasibility of testing using web service business
process testing. Chen et al. [9] Present an approach to
automatically generate executable test cases based on activity
diagrams. Here, they use simple path coverage adequacy
criteria. Simple path refers to a feasible execution in an
activity diagram that start from the initial node and end with
the final node. Before randomly generated test case is
executed, its execution path in activity diagram is predicted by
calculating data classifiers of decision nodes. Useless input
that is unable to raise path coverage will be dropped.
Boghdady et al. [10] Proposes an enhanced XML- based
automated approach for generating test cases from activity
diagrams. Activity dependency table (ADT) is created for each
XML file which cover all the functionalities in the activity
diagram but in a reduced form. Activity dependency table
contains pre-condition and post-condition to carry the input,
output and guard conditions of the removed nodes in the form
of expression. Activity dependency graph is generated from
activity dependency table (ADT) to show all the possible test
paths. Test cases derived from behavior or instructional
models are functional test case and they have the same level of
abstraction as the model creating them. Full condition
coverage criteria used with state chart or communication
diagram. All basic path coverage criteria used with activity
diagram.

WWW.AS1anssy. oryg

Yolume II, Issue IJ

I1l. PROPOSED TEST DATA GENERATION APPROACH

Test data generation is an important part to test the SOA based
services. Quality of test data determines the efficiency of
testing. Test cases are generated using this test data. Test data
is the set of test input data and test output data. In this report,
we propose a test data generation approach. Our proposed
approach uses the XML schema file. The proposed test data
generation approach follows the following steps:-
a. First, we get the XML document related to the
service.
b. After getting the XML document we generate the tree
table of the XML schema.
c. Further, we use our algorithm to generate the test
data.
To implement our algorithm we use the example of 'Online
Purchasing' an SOA based application. During the online
purchasing we have to supply our credit card information.
This credit card information is validated by the outside service
vendor. Once the order has been finalized, the e-commerce
company deliver our order and for this they have to co-
ordinate with the shipping service vendor. So, 'Online
Purchasing' provides a perfect understanding of SOA. We also
use the TAXI tool [11] to generate the tree table of the XML
schema. XML schema defines the data types and structures of
web service documents. An XML schema is the information
source for the generation of test data. Data type definition
(DTD) as the schema language defining the XML document
structure. The data type definition (DTD) document contains
the rules and relationships between the elements.
Proposed Test Data Generation Algorithm

Input:dataTypeName, constraint.

Output: VALUE

Step 1. Generate tree table of the XML schema;
Step 2. Analyze the tree table at each node;

Step 3. If (data type is simple type){

Step 4. Set VALUE :=getData (dataTypeName,
constraint);

} // data type is simple.

Step 5. else {

Step 6. Set VALUE :=getData (choice, constraint);
} // data type is complex.

Step 7. Write : VALUE;

Step 8. Exit.

To implement our algorithm we take an example of 'Online
Purchasing' (Fig.5) an SOA based system. If needed, we can
also divide the given schema into various sub schemas for
reducing the complexity. Division of schema is made based on
tag grouping. After getting the XML schema file of 'Online
Purchasing' system we load this XML file into the TAXI tool
and generate a tree table of the XML schema. Fig. 1 shows the
tree table of the given XSD file. After getting the tree table of
the XML schema we expand the tree of the XSD file and
analyze the tree table at each node. If the node is a complex

Mail: asianjournalzo15@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1./F-2.71

data type, then we convert this complex node into simple
node. To make the complex node into simple node we convert
the complex node elements into <choice> elements and apply
various constraints on it. Applying constraints between choice
elements help us to reduce the construction of a redundant
combination of choices. There is a list of initial weights of
children of a choice element. Default weight values for the
element are given by TAXI automatically. The amount of the
weights cannot be greater than 1 or smaller than 0. If it
happens then TAXI sends an alert message and modification
will be rejected. Under choice element sum of the weight must
be within 1. If the user is not satisfied with the modified
weight than he can click on the reset button. To start the
modification user needs to click on start modification button.
To lock the weight assignment user needs to click the stop
modifying button. When the value of max occur is unbounded
TAXI giving its default value 3. The default value can be
changed.

By | Appoms

Fig. 1 Tree table of the 'Online Purchasing' system

The tree table presents in the fig. 1contains following nodes

WWW.ASTANSSr. oryg

Yolume II, Issue IJ

¢ E=2 schema
o a complexType: accountAdministration
@ 8 complexType: transactionSubsystem
¢ == al
T element: transaction
element: ransactionType
element: ransactionStatus
) element
¢ [8 complexType: user
¢ == all
"] element: loginname
element: email
element: phoneMNumber
element: password
element: Authenticate
element: Places
9 [8 complexType: order
¢ == al
"~ element: userid
element: orderDate
element: orderStatus
element: orderType
element: validOrder
element: shiptoContactId
element: Places
| . element: approve
¢ [8 slement: executeOrder
@ =8 complexType
o == all
" element: userlid

| element: order
| element: Process
¢ [=m element: cancelOrder
@ |8 complexType
* == all
— element: userld
] element: order
| — element: Process

2 element: Assign_to
¢ [complexType: buyProduct
¢ == all
[T element: userid
element: order
element: product
. element
\— element: approve
¢ [m complexType: sellitem
¢ == all
[T element: userid
T element: product
.| element: order
T 1 element
T— element: approve
¢ I complexType: product
¢ = all
T element: name
element: id
element: quantityAvailable
element: vendorld
. element: approve
@ |8 complexType: depositeAmount
% == all
] element: userld
element: amount
element: userAccount

element

b b

bbb bk

db b kb k

el
sy

18!

Fig. 2. Nodes of the 'Online Purchasing' system.

Each node presents in the 'Online Purchasing' system

represent an individual service.
transactionSubsystemservice,user service, order service,
execute order service, cancel orderservice, by-product,

service, sellltem service, product, service and depositeAmount

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1./F-2.71

service are the different service components of ' Online

Purchasing' system.

User can enter the test data by double clicking on the element

name. A window will appear where the user can see the

existing values for that element. User can delete some existing

values and add new ones one by one. Now we generate an

XML instance for the subschema. An XML Instance

document is a file that contains the information, or data, of

what we are trying to describe with our schema. The instance

document will refer to the schema design that provides its

structure. When we are going to generate a test data we select

the value for each element. Value can be generated randomly.

We can also pick the value from the Test data set. Our

proposed approach, focus on test data generation based on

XML tree table structure. Here, we identify the complexity of

the nodes and apply our algorithm to generate the test data.

We apply our test data generation method for ‘product

service'.

<xsd:complexType name="product">

<xsd:all>

<xsd:-element name="name" type="xsd:string"
minOccurs="0" maxOccurs="1">

</xsd:element>

<xsd:-element name="id" type="xsd:string"

minOccurs="0" maxOccurs="1">

</xsd:element>

<xsd:-element name="quantityAvailable"

type="xsd:boolean” minOccurs="0" maxOccurs="1">
</xsd:element>

<xsd:-element name="vendorid"

type="xsd:string” minOccurs="0" maxOccurs="1">
</xsd:element>

<xsd-element name="approve"”

type="myproject:sellitem” minOccurs="1" maxOccurs="1">
</xsd:element>

</xsd:all>

</xsd:complexType>

Fig.3 XML schema format of ‘product’ service component

Name, id, quantityAvailable, vendoridand approve are the
different elements presents in the 'product service'. We have to
generate the test data for each element. Fig.3 shows the test
data for product element'name’.

WWW.AS1anssy. oryg

Yolume II, Issue IJ

E

Exstng vabses
_pen
oy

Dot
st
hardtsk

= P
1/yh| | ¥reie ﬂ,

Fig.4 Test data, generation of 'product, service' element 'name’

We can bring the variety in the test data generation method by
applying various XSD constraints.

We can apply <maxlength> XSD constraints to determine
maximum length of the 'name’ element. This XSD constraint
helps to generate a variety of test data as follows-

Length (name) >maxlength invalid test data.

Length (name) <maxlength valid test data.

Length (name) =maxlength valid test data.

invalid test data.

Length (hame) =empty

Similarly, we can generate the variety of test data for
‘quantityAvailable' element when the customer is going to
purchase the product with some fixed quantity. For this we can
apply <minoccur>XSD constraints.

When <minoccur=0> it shows invalid test data.
When <minoccur=1> it shows valid test data.

So, by applying various XSD constraints on element name of
the service component we can generate the variety of the test
data.

IV. CONCLUSION

This paper illustrates the automatic test data generation
approach through XML schema. Our proposed approach uses
the XML tree table structure. This tree table structure gives
surety to traverse each element of the schema. Further,
itidentifies the complexity of the nodes and use the propose
algorithm to generate the test data. In our future work we will
focus to generate the test case from this tree table structure
with better test coverage.

REFERENCES

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology

Issn !No.:2350-1146, 1./F-2.71

[1]
[2]
(3]
(4]
(5]

(6]
(7

Jeff Offutt and Wuzhi Xu. Generating Test Cases for Web Services
Using Data Perturbation. In IEEE (2003).

Derived XML DataTypes,
us/library/ms256052.

Erin Cavanaugh. Web services: Bene_ts, challenges, and a unique,
visual development solution,Altova white paper, www.altova.com.

Xiaoying Bai and Wenli Dong. WSDL-Based Automatic Test Case
Generationfor Web Services Testing. In IEEE (2005).

Zhang Guangquan, Rong Mei and Zhang Jun. A Business Process of
WebServices Testing Method Based on UML 2.0 Activity Diagram. In
IEEE (2007).

Primitive XML
us/library/ms256220.

W.T.Tsai, Y. Chen, R. Paul, N. Liao and H. Huang. Co-operative and
Group Testing in Verification of Dynamic Composite Web Services. In
IEEE (2004).

http://msdn.microsoft.com/en-

DataTypes, http://msdn.microsoft.com/en-

=?xml version="1.0" encoding="UTF-8" 7=
=xs:schema targetNamespace="http://myproject” xmlns="http://myproject”
xmlns myproject—"http ://myproject” xmlns:xs="http://www. w3 . 01g/200 1/ XML Schema">

=xs:complexType name="accountAdministration"=

—xs:all=
<xs:clement name—"account"” type—"xs:string" minQOccurs—"0" maxQOccurs—"1">
=</xs:element=
=xs:element name=—"Authenticate" type=—"myproject:user"” minCOccurs="1" maxOccurs—"unbounded"=
=/xs:element=>

=/xs:all=

=/xs:complexType=>

=xs:complexType name=""transactionSubsystem"=
=xs:all=

=—xs:element name

"transaction" type

</Xs:element=
=xs:element name="transaction Type" type="xs:string" minOccurs="0" maxQOccurs="1"=>
=/xs:element=>
<xs:element name="transactionStatus" type="xs:boolean" minOccurs="0" maxOccurs="1">

</xs:element>
<xs:element ref="myproject:executeOrder" minOccurs="1" maxOccurs="unbounded">
</xs:element>

</xs:all>

</xs:complexType>
<xs:complexType name="user">
<xs:all>

<xs:element name="loginname" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name="email" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>

<xs:element name

</xs:element>
<xs:element name="password" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name="Authenticate" type="myproject:accountAdministration" minOccurs="1" maxOccurs="1">
</xs:element>

<xs:element name="Places" type="myproject:order” minOccurs="0" maxOccurs

</xs:element>
</xs:all>
</xs:complexType>

<xs:complexType name

order'">

<xs:all>
<xs:element name="userld" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name="orderDate" type=""xs:string" minOccurs="0" maxQOccurs="1">
</xs:element>

<xs:element name

</xs:element>

<xs:element name

</xs:element>
<xs:element name="wvalidOrder" type="xs:boolean”"” minOccurs="0" maxQOccurs="1">
</xs:element>
<xs:element name=""shiptoContactld" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>

WWW.AS1anssy. oryg

(8]
[

[10]

[11]

"xs:boolean" minOccurs

Yolume II, Issue IJ

W. T. Tsai, Jerry Gao, Xiao Wei and Yinong Chen. Testability of
Softwarein Service-Oriented Architecture. In IEEE (2006).

Xin Chen, Nan Ye, Peng Jiang, LeiBu and Xuandong Li. Feedback-
Directed Test Case Generation Based on UML Activity Diagrams. In
IEEE (2011).

Pankinam N. Boghdady, Nagwa L. Badr, Mohamed A. Hashim and
Mohamed F.Tolba. An Enhanced Test Case Generation Technique
Based onActivityDiagrams. In IEEE (2011).

Antonia Bertolino, Jinghua Gao, Eda Marchetti and Andrea
Polini.Automatic Test Data Generation for XML Schema-Based
Partition Testing. In proceedings of Second International Workshop on
Automation of Software Test, IEEE , 2007.

"O" maxOccurs="1"=>

phoneNumber" type="xs:int" minOccurs="0" maxOccurs="1">

unbounded">

orderStatus" type—"xs:boolean" minOccurs="0" maxQOccurs="1">

orderType" type="xs:string" minOccurs="0" maxQOccurs="1">

Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume II, Issue IT
Issn !No.:2350-1146, 1./F-2.71

<xs:element name="Places" type="myproject:user" minOccurs="1" maxOccurs="1">

</xs:element>

<xs:element name="approve" type="myproject:buyProduct" minOccurs="1" maxOccurs="unbounded">
</xs:element>
</xs:all>
</xs:complexType>
<xs:element name=""
<xs:complexType>
<xs:all>

<xs:element name="userId" type="xs:string" minOccurs="0" maxOccurs="1">

</xs:element>

<xs:element name="order" type="xs:boolean" minOccurs="0" maxOccurs="1">

</xs:element>

<xs:element name="Process" type="myproject:transactionSubsystem" minOccurs="1" maxOccurs="1">
</xs:element>

</xs:all>

</xs:complexType>

</xs:element>
=<xs:element name

<xs:complexType>

<xs:all>

<xs:element name="userld" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>
<xs:element name
</xXs:element>
=<xs:element name=""Process" type="myproject:transactionSubsystem" minOccurs="1" maxQOccurs="1">
</xs:element>

<xs:element name="Assign to" type="myproject:deposite Amount” minOccurs="0" maxOccurs="1">
</xs:element>

</xs:all>

</xs:complexType>

</xs:element>

<xs:complexType name="buyProduct">

<xs:all>

<xs:element name="userld"” type="xs:string" minOccurs="0" maxQOccurs="1">

</xs:element™>

=<xs:element name—"order" type—"xs:boolean"” minOccurs—"0" maxOccurs="1"=>
</xs:element>
=<xs:element name
</xs:element>

executeOrder">

cancelOrder">

order" type="xs:boolean" minOccurs="0" maxOccurs="1">

product" type="xs:string"” minOccurs="0" maxOccurs="1">

=<xs:element ref="myproject:executeOrder"” minOccurs="1" maxQOccurs="1">
</xs:element>
=<xs:element name="approve" type="myproject:order” minOccurs="1" maxOccurs="1">

</xs:element>
</xs:all>
</xs:complexTyvpe™>
=<xs:complexType name
=<xs:all>

=<xs:element name="userld" type="xs:string"” minOccurs="0" maxOccurs="1">
</xs:element>

=<xs:element name=""product” type="Xs:string” minOccurs="0" maxOccurs="1">
</xs:element>

=<xs:element name=""order" type="xs:boolean” minOccurs="0" maxOccurs="1">
</xs:element> . .

=xs:element ref="myproject:executeOrder” minOccurs="1" maxOccurs="1">
</xs:element=>

=xs:element name=""approve" type="myproject:product” minQOccurs="1" maxQOccurs="1">>
</xs:element=>

</xs:all>

</xs:complexType>

=xs:complexType name="product">

=xs:all=

=xs:element name=—""name" type="xXs:string"” minQOccurs="0" maxQOccurs="1"=>
</xs:element=>

=xs:element name="1d" type="Xs:string" minQOccurs="0" maxQOccurs="1">

</xs:element=>

“xselement name=""guantity Available" type="xXs:'boolecan”" minOccurs="0" maxOccurs="1">
</xs:element=>

“xs element name="vendorld" type="Xs: string" minOccurs="0" maxQOccurs="1">
</xs:element=

“xselement name=""approve" type="myproject:sellltem” minOccurs="1" maxOccurs="1">
</xs:element=>

"sellIltem "=

WWW.ASIANssr.org Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

Asian Journal of Convergence in Technology Volume II, Issue IT
Issn !No.:2350-1146, 1./F-2.71

</xs:all>

</xs:complexType™>

<xs:complexType name="depositc Amount'=>

<xs:iall=

<xs:element name="userld" type="xs:string" minOccurs="0" maxOccurs="1">
</xs:element>

<xs:element name=—"amount"” type="xXs:int" minOccurs="0" maxOccurs="1">
</xs:element=>

=xs:element name="userAccount” type="xs:string" minQOccurs="0" maxOccurs="1">
</xs:element>

<xs:element ref="myproject:cancelOrder"” minOccurs="0" maxQOccurs="1">>
</xs:element>

</xs:all>

</xs:complex Type=>

</xs:schema>>

Fig.5 XML schema format of 'Online purchasing' system

WWW.ASIANssr.org Mail: asianjournalzois@gmail.com

http://www.asianssr.org/

