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   Abstract—Support Vector Machines (SVM) is a Machine 

Learning Algorithm which is used for Classification and 

Regression in many applications. The vital characteristic of 

SVM is that the classification decision function is formulated 

using very few points in the training dataset. We have 

provided the less publicized mathematical formulation of Hard 

Margin SVM Classifier, Soft Margin SVM Classifier and the 

Kernel Trick. In this paper we have used two sparse data sets, 

we found that Kernel SVM shows significantly better 

generalization and prediction accuracy for sparse datasets. We 

have compared the classification performance with other 

Machine Learning algorithms such as Logistic Regression, 

Neural Networks, Bayesian Network, KNN, Bagging and 

Random Forest.  

Index Terms—Support Vector Machines, Kernels, sparse 

data, large attributes, Machine Learning 

I. INTRODUCTION 

   Support Vector Machines (SVM) was introduced in 
1992 by Vapnik et al. [1]. SVM is a learning system which 
uses a hypothesis space of linear functions in a high 
dimensional feature space. It is one of the very successful 
algorithms due to some key factors such as ’maximum 
margin’ which leads to better generalization, ’dual form’ 
makes it easier to optimize and the ’kernel trick’ which is 
used to perform the classification in a higher dimensional 
space without the expense of the high computational cost. 
Due to this SVM has been used in many areas such as text 
classification [3], image classification [4], speech recognition 
[5], face detection [6]. Most of the current developments in 
SVM are focused on Kernel improvements [7], changing the 
learning methods [8], parameter optimization [9] and tuning 
[10].  

 In SVM classification, the learning problem transformed 
to a Quadratic Programming (QP) problem subject to the 
constraints. The basic linear framework is easily extended to 
a non-linearly separable data points in SVM. The 
fundamental idea behind this extension is to transform the 
input space where the dataset is not linearly separable into a 
higher dimensional feature space where the data could be 
linearly separable. The function associated with                    
this transformation is called the ”Kernel Function”, and the 
process of using this function to move from a linear to a non-
linear SVM is called the ’Kernel Trick’. 

II. FORMULATION 

A. Hard Margin SVM Classifier  

The Hard Margin SVM Classifier is also known as 
Maximum Margin Classifier was introduced in 1992 [1]. In 
Hard Margin SVM Classifier for binary classification, it is 
based on searching for a separating plane (or hyperplane in 
higher dimensional space) that is equidistant to the class 
boundaries where the two classes are closest to each other. It 
also maximizes the distance to these class boundaries. The 
separating hyperplane is placed bisecting the shortest line 
connecting the class boundaries. 

 
 

Fig. 1. Maximum Margin Classifier 

   Consider that we have two arrays of linearly separable 
data as shown in Fig1. Let the input   has two features 
{     }              where            The data has two 
classes; Positive Class (Class 1) when      , Negative 
Class (Class 2) when      . We have to find the optimal 
separating hyperplane which has the largest margin. 

 The Equation of a Plane is derived as follows: 

 

 

Fig. 2. Diagram to derive the equation of a plane
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The above Fig 2 depicts a plane in 3-dimensional space 
and the vectors related to the plane.   is a fixed point on the  

Plane  ,       ,   is an arbitrary point on the Plane  , 

      .  

 

             

       

                    

                                
             

         

                                          

              (1) 

            

                                                                                                                         

Where the vector   is normal to the Plane  . The above 
derived equation could be generalized to a hyperplane in   

dimension. If vector      , then      and   is a scalar. 
In the binary classification case (as in Fig1), the equation of 
the separating hyperplane could be written as follows:         

 

                           (2) 
 

The decision function      of the optimal separating 
hyperplane is selected to have equal distance from the 
positive margin and the negative margin. The separating 
plane and the margins are illustrated in Fig 3. 

  

  

  

  

   
 

 

 

 

 

 

Fig. 3. Hard Margin Classification 

The equations for decision function and the margins can 
be written as follows. 

                                 

                                               

                                                 

                                                       

From Fig 3, there are two classes of points; Positive class 
(      ) and Negative class (      ). The points lie 
on either the positive margin or the negative margin are 
called Support Vectors [2]. The dotted line is perpendicular 
to the margins, this line intersects the margins at   and  . 
The distance between these two points (    ) will be the 
closest distance between the boundaries of the two classes. 
Basically we have to find the Decision function which 
maximize the distance  . Point   lies on the Negative 
margin, and it satisfies,   

                                                  (3) 

Similarly, point   satisfies the following equation.   

                                                  (4) 

(4)-(3)          w   (x+ 
- x

-
) = 2  

              ∥w∥ × ∥(x+ - x-)∥ = 2        (  w ∥ (x+ - x-))  

                            ∥w∥ × d = 2  

                                       d = 2 / ∥w∥ 

To obtain the optimal separating plane we have to maximize 
    ∥  ∥. Next step is to derive the constrains.  

                                                   (5) 

                                                  (6) 

  

If we multiply either inequalities     or     with the 
corresponding    we get the same outcome as follows:  

                                                                           
 

 In order to find   and   of the Decision function     , we 
have to maximize     ∥  ∥ such that the constraint  

            is satisfied. Maximizing   ∥  ∥ would 

yeild the same results if we minimize 
 

 
∥  ∥ . The function 

 

 
∥  ∥  is a quadratic, continuous and a differentiable function and 

we could reach a global minimum when we optimize it.  

The Optimization Problem could be written as follows: 

 

   
   

    
 

 
∥  ∥ 

                                           (8) 

We have to understand the (                  ) 
(   ) conditions in order to resolve the above optimization 
problem. 

Karush-Kuhn-Tucker (KKT) Conditions:  

KKT Conditions are used for Optimization Problems 
with Inequality Constraints [11]. Suppose we have to resolve 
the following optimization problem.  

 

   
 
        

                                     (9) 

 Where the function    :  
   ,            are the 

Inequality Constraints. Let’s use   to denote the domain of 
this problem.    is the solution of the above optimization 
problem, if            for all   satisfying        , 
where            

 The Lagrangian function   streamlined with the 
optimization problem is given as    

                                         

 

   

                          

 where                 
     is called as the 

Lagrange multiplier.  
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      is the Lagrange Dual function, it is defined as the 
infimum of the Lagrange function        in respect of  .  

                   
   

                                                (11)    

Indicate    as the optimal value of the primal problem. 

       . This is known as the weak duality. 

We have to optimize the following Lagrange dual optimization 
problem in order to get the lower bound of   .  

   
 
        

                           
                                                       

When the primal problem and the dual problem optimal values 
are same, it is called Strong Duality. KKT conditions are broadly 
used with problems where strong duality exists. 

   KKT conditions for the optimization problem in (9) are 

                         
          

            

          
                 

        
     

                                                              

        
                

  

   is an optimal solution when there exist a       that 
makes the constraint qualifications in      holds.   

Next, we will apply the KKT conditions to the SVM 
Optimization problem in    .   and    could be written as follows 
for the SVM Optimization Problem in    ,  

  

     
 

 
∥  ∥  

 

 
   

                                      
          

  

As per     , the Lagrangian function for the SVM 
Optimization Problem,  

         
 

 
      

 

   

                              

     is the associated Lagrange multiplier.  

      for           .  By applying the     conditions to 
the Optimization problem in     we get:  

  

                
                

              
                          

                                       
                        

                          
         

  
  

                          
                        

        
                 

                                           

                                

      
     

                 

         
        

                          

      
                

       

  

 From the above findings in     ,  

                       
      

                              (17)
            

           
               

             

                          
              

                          
              

As per     and    , when      then     
        

 . These are the points lie on both the margins.      for all 
other points. As we know from     ,       

         .  

So    will be calculated based on the points which lie on 
the margin, thus the decision function also depends on these 
points. In Hard Margin Classification the points lying on the 
Positive or Negative margins are called Support Vectors [2]. 
These are the only points needed to classify the unseen data 
and that is why it is called Support Vector Machines (SVM) 

The Lagrange dual function      for the Lagrange 
primal function          in      is written as,  

           
   
          

                

  By substituting       
            we get,  

     
 

 
   

 

   

       
    

 

   

                         

   

 

   

         

 

   

       
     

      

     
 

 
   

 

   

       
    

 

   

          

 

   

         

    

 

   

       
    

 

   

         
   

 

   

    
     
           

 

  

       

 

   

   
 

 
  

 

   

  

 

   

                           

 
 As shown in      we have to optimize the      in     .  

  

   
 
    

 

   

   
 

 
  

 

   

  

 

   

               

      

 

   

                                        

     

  

The above dual problem is a maximization problem. In 
optimization the maximization problem is often replaced by 
a minimization problem [12].  

Asian Journal of Convergence in Technology 
ISSN NO: 2350-1146 I.F-5.11

Volume V Issue III 

www.asianssr.org 29



 

 

The following convex quadratic programming problem 
has to be solved to find the optimum   .  

   
 
  
 

 
  

 

   

  

 

   

                  

 

   

  

          

 

   

      

                            

                               

 

After we solve the optimization problem in     , the solution 
   will be used to find the Decision Function      of the 
separating hyperplane. The optimal separating hyperplane,  

            

               
     

     
                                      (21) 

     - number of Support Vectors (  
   ).  

To obtain    choose any positive component of   . From     , 
for    ,        

      
     .  

 

      
      

      

                         
  

 

  

                        
                  

                                          
    

                                            
     

          

     (22) 

        belongs to one of the Support Vector point.  

Decision Function     ,  

                                                                              

       

 

   

  
                

 

   

  
            

 

    Where         is a support vector and            are the 

indices of all the support vectors.  

   We can see from the Decision function     , that only the 
training points corresponding to the support vectors have 
contributed and all other points have not contributed at all.                    
What If we have some noisy data and the classes are not linearly 
separable in feature space? In the next section we are going to look 
into this problem.  

B. Soft Margin SVM Classifier 

If the data is noisy, in general there will be no linear separation 
in feature space. In situations where linear separation is not possible 
due to noisy data, we could construct a linear classifier by 
introducing a penalty function (  ) for the classification errors. Then 
optimize the function to minimize the classification errors (  ) as 
much as possible. 

As depicted in Fig 4, the classes are not linearly separable due 
to noisy data.    is the distance of the points which are on the wrong 
side of the margins. It is also called the Slack variable, and where 
     for all points.  

 

Fig. 4. Soft Margin Classification 

For linearly classifiable data, the following inequality 
holds,  

                          

For the points on the wrong side, the above inequality 
will not be satisfied, in this case those points would satisfy 
the following inequality.  

                          

We could generalize the inequality condition for all the 
points which are on the correct side of the margins and 
wrong side of the margins as follows.  

                                 

where  

       for the points on the correct side of the margin  

       for the points on the wrong side of the margin  

Therefore, we could formulate the optimization problem 
for the soft margin SVM as follows,  
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  is the penalty parameter. Lagrangian function for the 
optimization problem in     . This is the primal form of the 
Lagrange function for Soft Margin Classification.   

  

              
 

 
       

 

   

     

 

   

    

   

 

   

                   

             

     and      are the associated Lagrange multipliers, 

where      and      for           

Apply the     conditions to the Optimization problem 
in     :  
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Findings from above     Conditions      are:   

•     
    

     so    
      

  

  
     thus     

     so    
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if   
   , then      

                

        - when     , the points lie on the margins  

        - when     , the points are on the wrong side of 
the                        margin, but correctly classified  

        - when     , the points are misclassified  

        -          
         

Since   
    when      all the points which lie on the 

margin and which are on the wrong side of the margins 
contribute to the Decision function     .  

As shown in      the Lagrange dual function      for 
the Lagrange primal function          is written as,  

  

              
      

               

  
               

       

 

 Apply the outcome of      to     ,  

 

                      
       

     
 

 
       

 

   

     

 

   

                                          

   

 

   

                    

     
 

 
         

 

   

       
         

 

    

 

   

    
     
           

 

   

 

   

                  
           

     

 

   

   

              

 

   

   
 

 
    

       

 

   

   
 

 
   

 

   

       
    

 

   

               

 

       

 

   

   
 

 
  

 

   

  

 

   

                             

 Next optimize     ,  

  

   
 
    

 

   

   
 

 
  

 

   

  

 

   

               

      

 

   

      

                              

                      

   

We clearly notice that the Lagrange dual function for 
Hard Margin SVM and Soft Margin SVM are exactly the 
same except the constraints.  

  As shown above, Soft Margin SVM optimization 
problem      is same as the Hard Margin Optimization 
Problem      with an additional constraint that all the    are 
upper bounded by  . We also notice that    does not exist in 
the final form of     . After the optimized   

  is obtained 
the decision function can be defined. 
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Decision Function     ,  

     for Soft Margin Classification is derived similar to 
the Hard Margin Classification by substituting for    and 
  . 

                 

       
 

   
  

                
 

   
  

            

Where         is one of the support vector point which 
lies on either margin lines (    

   ), and            
are the indices of all the support vectors (    

   ).  

Using the Decision function the unknown   could be 
classified as follows: 

 

   Positive Class (Class 1)      if  D(x) > 0 

            Negative Class (Class 2)    if  D(x) < 0   x  

             Unclassified                if  D(x) = 0  

After we have trained the SVM with the training dataset 
we only need store the support vectors (    ) to classify 
any new pattern  .   

C. Kernel SVM Formulation 

In Kernel SVM the training dataset is mapped into a 
higher dimensional feature space using  , and a separating 
hyperplane is constructed in the transformed feature space. 
Through Kernel functions, it is feasible to create a separating 
hyperplane without explicitly executing the map in the 
feature space.  

 

     
 

Fig. 5. Mapping from input space (2-D) to a feature space (3-D) 

     Have a look at the dual form of the optimization problem in 

    , the key component is the dot product of    and   , which 

could be seen as a similarity function. If we consider the transform 

feature space is a   space, then the dual form could be written as 

follows.  

  

   
 
     

 

 
  

 

   

  

 

   

                  

 

   

  

          

 

   

      

                            

     

  

Let   be the mapping function, so         . Suppose 

we have a function K:         such that          
              called Kernel function, and the computation 

of          is about as expensive as        . If we have to 

compute               it would be very expensive 

depending on the dimension of      . Replacing         by 

         we could re-write the dual form as follows.  

   
 
     

 

 
  

 

   

  

 

   

                   

 

   

  

          

 

   

      

                            

     

 

The main advantage of using kernels is that, it is not 
required to perform any tedious calculations in high-
dimensional feature spaces. Common Kernels used in SVM 
are,   

    • Linear Kernel:                   

    • Polynomial Kernel:                     
   

    • RBF Kernel:                ∥      ∥
      

III. RESULTS 

   In this paper we have used the sparse datasets with 
large attributes. The experiment is to compare the 
classification performance using Machine Learning 
Algorithms such as Kernel SVM, Logistic Regression, 
Neural Networks, Bayesian Network, K-Nearest Neighbors 
(KNN), Bagging and Random Forest. We have used two 
datasets; Eplilepsy Dataset [13] and Basic Motion Dataset 
[14].   

Dataset1 [Epilepsy]: This dataset contains      classes 
and     attributes, the number of attributes are larger (151% 
of the total training instances) compared to the training 
instances of    . The test instances are also    , to have a 
more robust test. 

TABLE I.  DATASET: EPILEPSY 

Test Inst. Attr. classes classifier CCP 

137 207 4 Kernel SVM 89.85% 

137 207 4 Logistic 

Regression 

32.61% 

137 207 4 Neural 

Networks 

60.87% 

137 207 4 Bayes Network 56.52% 

137 207 4 KNN 68.84% 

137 207 4 Bagging 54.35% 

137 207 4 Random Forest 73.19% 

 

CPP - Correctly classified Points in percentage. 

As shown in Table 1, the Kernel SVM has performed 
significantly better (CPP - 89.85%) than the other tested 
Algorithms.  
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Dataset2 [Basic Motion]: This dataset contains      
classes and     attributes, the number of attributes are much 
larger (250% of the total training instances) compared to the 
training instances of   . The test instances are also kept at 
  , to have a more robust test.   

TABLE II.  DATASET: BASICMOTION 

  Test Inst.  Attr.  classes   classifier  CCP  

 40   100   4   Kernel 

SVM  

 97.50%  

 40   100   4   Logistic 

Regression  

 60.00%  

 40   100   4   Neural 

Networks  

 60.00%  

 40   100   4   Bayes 

Network  

 85.00%  

 40   100   4   KNN   62.50%  

 40   100   4   Bagging   67.50%  

 40   100   4   Random 

Forest  

 80.00%  

 

CPP - Correctly classified Points in percentage. 

As shown in Table 2, the Kernel SVM has performed 
significantly better (CPP - 97.50%) than the other tested 
Algorithms.  

IV. CONCLUSION 

   In this paper we have used the data from two sparse 
datasets and we have compared the performance with several 
Machine Learning Algorithms. Experimental results indicate 
that Kernel based Support Vector Machines performed 
significantly better on Sparse Datasets with Large Attributes.  

If we could identify the support vectors, we can ignore 
the rest of the data points, this is one of the key 
characteristics of SVM, by incorporating the Kernel 
functions, classification is performed much efficiently in a 
higher dimensional feature space, thus SVM can efficiently 
handle sparse datasets and outperforms rest of the 
classification methods. 
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