
A Random and Scalable Blockchain Consensus

Mechanism

Davut Çulha,

ASELSAN

Abstract— The central piece of blockchain technologies is

the consensus algorithm. The consensus is reached via

consensus algorithms in the distributed network of the

blockchain. The consensus becomes stronger if nearly all the

nodes in the blockchain network take part in building the

blockchain. Even if some nodes misbehave or malfunction, the

consensus should not break down then. Since blockchain

networks are distributed, even if some regions of the network

or some nodes of the network leave, the blockchain network

should not malfunction and it should be consistent. Therefore,

the consistency of the blockchain transactions should be

assured by all the nodes or nearly all the nodes, or most of the

nodes. In other words, the consensus should be the issue of all

the nodes. In this work, a novel consensus algorithm is

presented to diffuse the mission of building the blockchain to

all the nodes. In other words, the consensus should be the issue

of all the nodes. In this work, a novel consensus algorithm is

presented to diffuse the mission of building the blockchain to

all the nodes. The algorithm increases the randomness of nodes

and enforces the blockchain network to be more decentralized.

Randomness is realized by employing the power of

cryptography, especially by using public keys as a

characteristic for miners, which are also called signers.

Moreover, since the algorithm is realized with a few

operations, it contributes to the scalability of the blockchain.

Furthermore, digital signatures improve the security level and

consistency of the blockchain.

Keywords— blockchain; consensus algorithm;

decentralization; randomnes;, scalable; public key; hash value;

digital signature; cryptography

I. INTRODUCTION

Blockchain networks are distributed, and there should be
consensus in the blockchain transactions. For the consensus,
there are many methods, and which are known as consensus
algorithms.

Since blockchain networks are distributed, even if some
regions of the network or some nodes of the network leave,
the blockchain network should not malfunction and it should
be consistent. Therefore, the consistency of the blockchain
transactions should be assured by all the nodes or nearly all
the nodes, or the majority of all the nodes. In other words,
the consensus should be the issue of all the nodes. Naturally,
some nodes may not take part in the consensus, worse some
may behave against consensus. Even in these conditions, a
consensus should be reached. This well-known and tough
problem is known as The Byzantine Generals Problem. In
short, the consensus of the network is under the
responsibility of all the honest nodes. The number of honest
nodes should be maximized to maximize the strength of
consistency. This is decentralization. This means that there
should not be central authorities. If the consistency is

controlled by some central authorities, worse by only one
authority, this is the centralization problem. If such central
authorities misbehave, they can change the transactions, or
create new transactions in favor of themselves. In brief,
decentralization should be maximized in a blockchain
network. In this work, a consensus algorithm is designed
mainly for this purpose.

Against centralization, some consensus algorithms are
developed. In some of them, the structure of the transactions
of the blockchain is redesigned, and some graph-based
structure is proposed. In this work, decentralization is
empowered by increasing the randomness of the nodes which
take part in building the blockchain.

In blockchain technologies, although security is
empowered by using cryptography, security is very
important for blockchain technologies. Especially, private
keys should be kept safe from threats. In this paper, the
randomness of consensus is realized by using the public keys
of miners as their special characteristics. These unique
attributes are used in the mining process, and in the earning
of mining rewards. For miners, instead of maintaining keys
with different unique attributes, it is easier to sign suitable
blocks in the network. In other words, a collaboration of
network nodes can complete the mining operation fastest.
Fastest completions bring mining rewards fastest.

Pool mining is an indicator of centralization in
blockchain systems. The proposed model eliminates pool
mining because mining rewards are distributed among
signers directly. In other words, solo mining, and
collaboration with the blockchain network is the most
efficient way to do mining.

A big problem in blockchain technologies is scalability.
In other words, the number of transactions processed per
second is not sufficient for online businesses usually.
Therefore, to increase scalability, new consensus algorithms
are proposed day-by-day, and existing algorithms are
revised. In the proposed consensus algorithm, a few
operations are needed for the consensus, and this will
contribute to increasing scalability.

In the next section, the related work is presented. After
presenting the methodology, the proposed consensus
algorithm comes. The experimental results are presented.
Lastly, the conclusion is made.

II. RELATED WORK

Blockchain networks are distributed networks, and in
distributed networks, a consensus is reached via special
algorithms. These are known as consensus algorithms. In the
following, some important consensus algorithms and their
decentralization characteristics are examined.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

47

Proof-of-Work (PoW): The PoW algorithm requires
some amount of work for consensus. This work is proved
using hash functions. Hash functions are one-way functions,
which means that its application to an input is easy, and the
result is got immediately, however, from the result it is
impossible to find the input. This property of hash functions
is used to find an output with the desired pattern. The found
output guarantees that enough effort has been spent. In
Bitcoin, this algorithm is used for mining. A new block is
mined nearly in 10 minutes according to the adjusting of the
difficulty in the algorithm. Then the miner gets the mining
reward for its effort. And the miner propagates the block to
other nodes in the blockchain network, and they confirm the
correctness of the block easily with the help of the one-way
property of hash functions. After confirmation, the other
nodes add the block to their local blockchain with
confidence. The PoW algorithm provides consensus in
distributed nodes. However, it requires a huge computational
power, and this power increases exponentially in time. Thus,
it wastes such an amount of computational power and
becomes very expensive economically. The huge
computational power causes miners to form mining pools.
The disadvantage of mining pools is that blockchain
becomes centralized. The mining pools may use their powers
to dictate their own rules to the blockchain network
stakeholders and demolish the consistency of the blockchain.

Proof-of-stake (PoS): PoS algorithms are designed to
prevent resource wastes of PoW algorithms. In PoS, the new
block is mined by a selected miner who has enough stake in
terms of cryptocurrencies in the blockchain. The miner
selection is done proportional to the stake of the miner. This
would cause undesirable centralization on the side of the
highest stake owners. To prevent this, a randomization
method can be applied. In addition to this, the coin-age
method can be applied. In the coin-age method, not only the
stakes are used but also the ages of the stakes are considered
to select the miner. The selected miner uses its digital
signature to prove the ownership of the stake. The basic PoS
suffers from the Nothing-at-Stake problem. The selected
miner may create multiple blocks to gain more fees, and no
one prevents this. PoS may cause the blockchain network
centralized because the highest stake owners can direct the
blockchain.

Delegated Proof of Stake (DPoS): DPoS is a version of
the PoS algorithm. PoS resembles a direct democratic
election whereas DPoS resembles a representative
democratic election. In DPoS, stakeholders select their
delegates for mining operations. Then, these delegates
confirm transactions and blocks, and mine new blocks. This
representative democracy in consensus algorithm makes the
blockchain more centralized. Moreover, the delegates may
behave dishonestly in DPoS. To prevent this dishonesty, the
cheating delegates can be voted out.

Leased Proof of Stake (LPoS): LPoS is a version of the
PoS algorithm. Nodes with low balances increase their
chances of mining new blocks by leasing stakes of other
nodes with high balances. Naturally, the leased amount of
stakes are possessed by original wealth owners during
leasing, however, it increases the chance of mining new
blocks for the leasers. If the leaser wins to mine a block, the
mining reward will be shared among the leaser and the
original wealth owners proportionally to their stakes. LPoS

consensus method increases the decentralization of
blockchain and makes it more secure.

Proof of Elapsed Time (PoET): PoET consensus
algorithm is used in IntelLedger which is developed by Intel
as a blockchain platform. PoET runs in a Trusted Execution
Environment (TEE), such as Software Guard Extensions
(SGX) by Intel. Adding new blocks is done by randomly
selected nodes. Nodes request wait times from TEE which
produces random wait times. The node with minimum wait
time is selected as a miner. The TEE also produces the proof
for the election, and it is easily verified by other nodes. The
randomness and safety of this consensus algorithm rely on
specialized hardware such as SGX. This type of device
guarantees that their executions cannot be tampered with
externally. The main disadvantage of this algorithm is the
reliance on such devices, and this conflicts with the
philosophy of the decentralized blockchain.

The Practical Byzantine Fault Tolerance (PBFT): PBFT
is a Byzantine fault tolerance (BFT) consensus protocol. It is
the first practical solution to Byzantine failures. It uses
replicated state machines for consensus. In this method, a
new block is added to the blockchain if more than two-thirds
of all nodes agree on that block. The PBFT can tolerate the
malicious activities of one-third of all nodes. In this method,
the consensus is reached faster and more economically than
the PoW algorithm. Moreover, nodes without coins can add
new blocks to the blockchain, unlike the PoS algorithm.
PBFT is suitable for permissioned blockchains like
Hyperledger Fabric because the tolerance of PBFT to
malicious activities is low, and that may prevent reaching
consensus. Hyperledger Fabric also uses another variant of
PBFT called SIEVE for chaincode execution.

Cross-Fault Tolerance (XFT): XFT is a variant of the
BFT protocol. XFT assumes that a powerful adversary
cannot easily take the control of the entire network by
partitioning it into manageable subnetworks that do not
communicate with each other. Therefore, XFT relaxes the
BFT approach and simplifies the state machine replication
problem. If most replicated systems work synchronously and
correctly, a consensus is reached in XFT. XFT increases the
decentralization of the blockchain. However, it becomes
centralized as the probability of malicious attacks is
decreased.

Ripple: Ripple is a consensus algorithm that depends on
the Byzantine fault tolerance model. Ripple requires 80% of
the agreement for consensus in collectively trusted
subnetworks. Each trusted subnetwork is managed by a
special node named as server, and the server keeps the list of
nodes in its subnetwork called Unique Node List (UNL). If a
transaction triggered by a node is agreed by 80% of the
nodes in the UNL, then it is added to the distributed ledger.
The ledger will be consistent if faulty nodes do not exceed
20% of the nodes. Decreasing the probability of malicious
attacks results in centralization in the blockchain.

Delegated Byzantine Fault Tolerance (dBFT): dBFT is
like PBFT except for delegation. In PBFT, all nodes take a
role in adding a new block to the ledger, whereas in dBFT,
some nodes are chosen as delegates and only they take a role
in adding new blocks. Therefore, dBFT is more scalable than
PBFT, but it loses from the decentralization of the network.
dBFT algorithm is used in NEO cryptocurrency.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

48

Federated Byzantine Fault Tolerance (FBFT): FBFT
algorithm is a variant of the BFT algorithm. In FBFT, large
numbers of participants can reach a consensus easily. Each
participant trusts a limited number of other participants.
Therefore, there are many different groups of participants in
the network. Each group reaches a consensus internally. If
there are overlapping transactions in the groups, a global
consensus should be required. FBFT is more decentralized
than the PBFT algorithm. However, decentralization is
decreased with an increase in the security.

Stellar Consensus Protocol (SCP): SCP is designed for
micro-finance services. SCP is a variant of a Federated
Byzantine Fault Tolerance (FBFT) protocol. In FBFT, each
node selects its trusted partners. A group of trusted nodes
forms a quorum slice. In SCP, a node can place in more than
one quorum slices concurrently. Therefore, quorum slices
may overlap and build quorums. A quorum is a group of
nodes that is required to reach an agreement. A consensus is
reached if a quorum agrees on a statement. SCP has two
steps for consensus: nomination and ballot. Firstly, the
nomination step is executed. In this step, candidate values are
proposed and sent to all the nodes in the quorum for
agreement. Each node votes for a single candidate value. At
the end, the values which are selected unanimously go to the
ballot step in SCP. In the ballot step, federated voting takes
place and unanimously selected values are aborted or
accepted. Finally, the aborted values are discarded. If the
consensus is not reached in the ballot step, a new ballot step
is initiated using higher values. SCP has high throughput and
low latency, which is suitable for IoT applications; however,
its latency should be reduced to milliseconds to be used
efficiently in IoT applications. SCP like other BFT
algorithms is sensitive to malicious attacks. Therefore,
empowering the security of SCP yields centralization.

Proof of Authority (PoA): PoA is designed for
permissioned blockchain for high-performance needs. In
PoA, there are N trusted nodes, which are called authorities.
Each authority has a unique ID, and it is assumed that most
of the authorities are honest. In other words, N/2+1
authorities are assumed as honest. The responsibility of block
creation is distributed among authorities using a rotation
schema. For each authority in PoA, there is a special time
slice to create a new block. There are two implementations of
PoA: Aura and Clique. PoA is centralized because the
authorities are predetermined.

Aura: Aura is an implementation of the PoA algorithm.
Aura is implemented in Parity Ethereum clients. In Aura, the
network should be synchronous, and all authorities should be
synchronized with the same clock. Each authority has a
special time slice in a round of mining blocks. In that special
time slices, authorities add transactions to the new block and
broadcast it to other authorities. If all authorities accept the
proposed block, the new block is added to the blockchain.
Because of the predetermined authorities, Aura loses
decentralization characteristic.

Clique: Clique is an implementation of PoA algorithm.
Clique is implemented in Geth, which is a GoLang based
Ethereum client. In Clique, block creations are done in
epochs. When an epoch, which is a time period, starts, a
particular block is broadcasted, which specifies the set of
authorities. In Clique, epochs and their related leaders and
authorities are calculated using a formula. In each epoch,
authorities other than leaders can also propose blocks for

creation but blocks proposed by non-leaders are delayed.
Therefore, the block proposed by the leader in the current
epoch will be probably accepted first for maintaining the
blockchain. Clique is centralized because there are a few
authorities.

Proof-of-Capacity (PoC): PoC is, which is also known as
Proof of Space (PoSpace), is like PoW. PoW depends on
computing power whereas PoC depends on computer
storage. Miners in PoC increase their chance to mine new
blocks by storing immense data sets known as plots. This
algorithm was used in Burstcoin firstly. In Burstcoin, the
consensus algorithm is implemented in two stages. The first
stage is called plotting. In this stage, miners create nonces,
which are repeated hashing of data and miner’s ID using
Shabal hash algorithm. Calculating nonces using the Shabal
algorithm is very hard. Therefore, miners calculate nonces in
advance and store them in the hard disks. For each block
creation in the network, a puzzle is started. The winner is the
miner, who has the closest nonce. As miners increase the
space used for plotting, they get more nonces and increase
their chance to obtain rewards. PoC is suitable for mining
pools. Therefore, it becomes centralized.

Proof-of-Burn (PoB): In PoB, miners send some coins to
a verifiable and unspendable address, which is called the
burning of coins. The used addresses are called eater
addresses, and the coins sent there are unrecoverable and
cannot be spent again. Those addresses are generated
randomly and there is no associated private key for them.
Miners win to mine new blocks proportional to the amounts
of coins they burned. Therefore, malicious miners will not be
in the mining of blocks because they will not want to spend
coins. This method is used in Slimcoin cryptocurrency. The
more the miners burn coins, the more they have chances to
win the mining rewards. In PoB, miners will not earn more
even if they are joined. Therefore, PoB supports
decentralization. PoB is not suitable for IoT applications
because it does not have a monetary framework. PoB is
centralized because the mining ability of nodes increases
with wealth.

Proof of Importance (PoI): PoI can be accepted as a
variant of PoS. In PoS, miners have more chances to add
new blocks if they hold more coins in their accounts.
Similarly, in PoI, the chance of adding a new block to the
blockchain is proportional to the importance of the miners.
PoI depends on the importance of nodes in the network. The
importance of a node is determined according to the
productive activities of that node in addition to its account
balance. For example, the number of transactions that
occurred to or from that node can show the importance of the
node. Miners increase their chance to mine new blocks
proportional to their importance. PoI is firstly used in NEM
cryptocurrency. PoI improves decentralization of the
blockchain network, and it is resistant to Sybil-style attacks.
PoI has high throughput and comparatively low latency.
Therefore, it is suitable for IoT applications however it
depends on a monetary framework, which is not compatible
with IoT applications. PoI is suitable for mining pools.
Therefore, it tends to be centralized.

Proof of Activity (PoAc): PoAc is a combination of PoW
and PoS algorithms. First, a hash problem is solved by
miners as in the PoW algorithm. The hash solution is related
only to the header of the block not to the transactions.
Transactions are added to the solved block header later. After

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

49

adding transactions to the block, some validators sign the
block to reach a consensus. The last part of PoAc is done
using the PoS algorithm. Since PoAc is a combination of
PoW and PoS, it is more secure against practical attacks. In
other words, 51% of attacks drop to nearly zero in PoAc,
because that kind of attack requires 51% of mining power
and 51% of all coins at the same time. The cryptocurrencies
Decred and Espers use the PoAc algorithm in their
blockchain. Since PoAc has high latency, it is not suitable for
IoT applications. PoW could lead to centralization of the
blockchain network, while PoAc tends to decentralize
because centralized mining power should be reduced to
obtain rewards proportional to miner stakes. PoW and PoS
can be considered as centralized. Therefore, PoAc can be
considered as centralized.

Casper: Casper is a PoS consensus algorithm for
transferring the consensus algorithm of Ethereum from PoW
to PoS. Casper punishes malicious validators by decreasing
their stakes to solve the problem of Nothing at Stake.
Moreover, a chain selection rule like the longest chain in
Bitcoin blockchain is applied for the forks. The selection rule
is the Greedy Heaviest Observed Subtree (GHOST). In
GHOST, the fork with the heaviest subtree among the forks
is selected as the main chain. Casper is a PoS algorithm.
Therefore, it tends to become centralized.

Tendermint: Tendermint is a combination of PBFT and
PoS algorithms for permissioned blockchain. In PBFT, the
voting power of each node is the same, whereas in
Tendermint voting powers of the nodes are proportional to
their stakes. In Tendermint, the voting process has two steps:
pre-vote and pre-commit. If two-thirds of validators pre-vote
for the block, the block goes to the pre-commit step. If two-
thirds pre-commit the block, the block is added to the
blockchain. In Tendermint, validators should lock their coins
to vote. If they do malicious activities, they are punished.
Tendermint has high throughput and low latency however it
is not suitable for IoT applications because it depends on a
monetary framework. Since Tendermint depends on PBFT
and PoS algorithms, it is a candidate for centralization.

Paxos: Paxos is the first consensus algorithm. The nodes
in Paxos are categorized as proposers, acceptors, and
learners. In Paxos, a single value is selected from one or
more values by the acceptors. If the value is accepted by
most of the acceptors, it means that the consensus is reached,
and the value is broadcasted to all learners. Paxos is based on
voting system like PBFT. Therefore, it may become
centralized.

Raft: Raft algorithm is proposed after the Paxos
algorithm. Raft is easier to understand and easier to
implement than Paxos. Raft is a voting-type algorithm and
uses log synchronization for data consistency. Nodes have
different roles as leaders, candidates, and followers. All
nodes can be candidates. If a candidate gets more than half of
the votes, it becomes the leader. At this time, a log is copied
to the followers. Each node checks the health of the leader
whether it is alive or not. If it is lost, a new leader election is
performed. In Raft, there are terms, and, in each term, there
is only one leader. During that term, the leader manages all
the requests of the clients. Raft can be considered as
centralized because it uses a voting mechanism.

Proof-of-Trust (PoT): PoT has four phases for block
creation. These are leader election, determining validators,

voting, and chaining. In the leader election phase, a leader is
selected. In the second phase, the leader determines the
validators. In the third phase, the validators vote for the
transactions. In the last phase, validated transactions are
chained to the blockchain. PoT is scalable and resistant to
Sybil-type attacks. Mining pools can control PoT. Therefore,
it becomes centralized.

Proof of Weight (PoWeight): PoWeight is a type of PoS
algorithm. In PoWeight, each node is assigned a weight. The
weights are calculated according to different factors in
addition to balances. Filecoin cryptocurrency uses PoWeight,
and the weights are calculated according to the amount of
IPFS data. There may be an incentivization problem because
there is no reward for transaction confirmation. PoWeight is
suitable for mining pools. Therefore, it becomes centralized.

Blockchain networks are distributed and should be
decentralized. Decentralization means that there should not
be central authorities in the distributed network to reach a
consensus. In [1], an assessment on decentralization is made.
Most of the nodes should be able to take a role in the
decisions of the network, namely in the validation of
transactions. Moreover, they should be able to take a role to
record and update those transactions distributedly. Although
all nodes in the network do not need to trust each other, they
should reach a consensus in this trustless environment. For
this reason, there should be no single-point-of-failure in the
distributed network.

In blockchain technologies, centralization is a crucial
problem, and it is contradictory to the soul of blockchain
technologies. The root cause of centralization is mainly from
mining pools. In [2], the increasing power of mining pools
and centralization problems are addressed. In bitcoin
network, more than 99% of the hash power is produced by
mining pools [3]. Worse, the three biggest mining pools have
more than 50% of the total hash power [4]. Therefore,
instead of decentralization, because of these monopolies,
blockchain networks become centralized. Centralization
brings security problems as well.

To decentralize the blockchain networks, some consensus
algorithms are designed. In [3], against the centralization
problem, a graph-based consensus mechanism is proposed.
Instead of mining blocks, the transactions are mined using a
proof-of-work mechanism, and a transaction verifies two
parent transactions and gets mining fees from parent
transactions that had posted fees before for verification.
Therefore, the newly mined transactions increase
confirmations of the parent transactions, and its graph-like
structure increases the scalability. This transaction-based
mining supports solo miners instead of mining pools and
empowers decentralization.

The randomness of nodes can be provided to achieve
decentralization. The proposed algorithm uses the
randomness of cryptography to incorporate all nodes in the
building of blockchains. Security is also an important issue
in blockchain networks. Security in blockchain means that
the transactions should not be changed by unauthorized ones,
and additionally, new transactions can be added by
authorized ones. The private keys showing the authorizations
should be kept secretly. There should not be external threats,
or the blockchain should be safe from those threats.

Nowadays, scalability may be the biggest problem in
blockchain technology. With the term of scalability, the

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

50

performance scalability of a blockchain network is meant. In
other words, it means the number of transactions that can be
processed in the blockchain per second. In [5], near-linear
scalability is reached by secure sharding of transactions. In
[6], a highly scalable consensus algorithm is introduced
based on sharding. In [7], various solutions to scalability are
analyzed. In [8], the inherent conflicts between scalability
and decentralization, and key challenges in blockchain
decentralizations are identified.

In [9], blockchain consensus algorithms are compared
based on scalability, method of the algorithm, and security
risks. In [10], for scalability and centralization problems, a
new consensus algorithm is proposed based on the BFT
algorithm. Advanced cryptographic techniques are used to
enhance the BFT algorithm.

Variations of BFT algorithms are used mainly to increase
the transaction throughput of blockchain. In [11], a fast and
scalable consensus algorithm based on BFT and hardware-
assisted secret sharing is proposed. Similarly, in [12],
hardware-based security is used to build an efficient
consensus algorithm named Proof of Luck. In [13], a
consensus algorithm based on the Swirlds hashgraph data
structure is presented. It is fast and Byzantine fault-tolerant.
In [14], a consensus algorithm based on the PBFT algorithm
is presented for scalability, and strong consistency is
achieved via collective signing. In [15], a fast and practical
consensus algorithm based on BFT is implemented in an
asynchronous structure to achieve high throughput. In [16], a
scalable Byzantine consensus protocol is designed to add
several blocks by building random secure committees. In
[17], a BFT consensus algorithm is presented to order
transactions in a determined way among nodes to reach
enough scalability.

The scalability of blockchain networks is increased using
additional chains to the main blockchain. In [19], different
consensus protocols run in satellite chains in parallel to
increase scalability. In [20], a graph-based consensus
algorithm is presented, which uses a dual-blockchain to
increase confirmation efficiency.

Another approach to the scalability problem of blockchain is
a functional deconstruction of a building new block. In [18],
a fast consensus algorithm based on the PoW algorithm is
implemented by deconstructing the blockchain into its basic
functionalities.

III. METHODOLOGY

Blockchain provides trust and consensus to desired
systems. To efficiently implement trust and consensus in
blockchain systems, decentralization of blockchain systems
should be ensured and perpetuated. In this paper, a novel
solution is proposed, which depends on the randomness of
public keys, for decentralization. The steps of the applied
methodology are the following:

 Maximizing decentralization of blockchain systems
is examined

 Unique attributes that can be used for
decentralization are determined

 A blockchain model is designed with the unique
attributes

 The blockchain model is proved using simulations

The most important problems in blockchain systems are
related to security, scalability, and decentralization. At the
heart of the blockchain systems, there are consensus
algorithms. Consensus algorithms are adjusted to optimize
properties in security, scalability, and decentralization of the
blockchain systems.

PoW favors security but it is not compatible with
scalability and decentralization. On the other hand, PoS is a
more scalable and decentralized algorithm, but it loses from
security. The combination of these algorithms is PoAc,
which tries to optimize all these properties.

In PBFT, decentralization is supported because all the
nodes vote for maintaining the blockchain. However, it is
less scalable because all the nodes are included in the
chaining process. Therefore, other approaches are applied to
increase scalability. In dBFT, the voters are limited to a
group of delegates.

In this work, decentralization is taken as the most
important issue for blockchain systems. Without
decentralization, the meaning of blockchain will be lost.

Decentralization is improved if the number of nodes in
the chaining process is increased. If distinct properties of the
nodes are included in the consensus mechanism, it will
support decentralization because it will disfavor the joining
of nodes.

Distinct features of the nodes may be their IDs, their hash
values according to some formulas, their private or public
keys. Public keys can be used to differentiate nodes. Public
keys, hash values, and signatures are random values because
no one can predict their values. Therefore, hash values of
public keys produce random values. This randomness
property can be used to support decentralization.

In this work, the randomness property of hash values of
public keys is considered to find a solution to the
decentralization problem of blockchain systems. After
finding the solution, simulations are performed to prove the
correctness of the solution.

IV. THE PROPOSED CONSENSUS MECHANISM

 The proposed algorithm works on a usual blockchain. In
other words, blocks are chained to the previous blocks with
the previous block header hashes until to the genesis block.
Block headers and transactions are kept separately. The
structure of the blockchain is shown in Figure 1 as a code
snippet.

Fig.1. Structure of a block header

 In the block header, four elements are defined as “block”,
“hash”, “sequence”, and “signers”. The first element is a
structure named “block”. In the structure, there are ordinary

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

51

block header elements. The element “index” is used to keep
the order of the block in the blockchain. The element
“timestamp” is used to keep the creation time of the block.
The element “nonce” is added to change the hash of the
block header. The element “transactions” keeps the pointer to
the transactions of the block. The element “previous_hash” is
used to point to the previous block header. The element
“signer_count” is special to this proposed algorithm. It shows
the number of signers who should sign the block header.
Here, this value is set to 4. It means that each block header
should be signed by 4 signers. The signer count can be
incremented to contribute to the strength of security. The
second element of the block header is named “hash”, and it
keeps the hash value of the ordinary block header. The third
element is named as “sequence”, which keeps public keys
and hash values of the combination of previous hash values
and public keys. The last element of the block header is
named “signers”, and it keeps the signatures of the signers
who signed the block header.

Fig.2. Adding a valid block to the blockchain

 In Figure 2, the pseudocode of adding a valid block to the
blockchain is depicted. The pseudocode shows that for each
block, ordered hash values are expected. Assume that each
node in the blockchain network has only one private key.
And a node prepares a valid block with valid transactions
and propagates it to the blockchain network. Each node in
the network tries to sign the block. Only one-fourth of them
will be able to sign the block because the end pattern of the
resulting hash value should be compatible with the
consecutive signing order. Only one-fourth of the nodes will
have the ability to sign because the algorithm is designed for
4 signers. In other words, 4 trials are needed for a signing
step. Therefore, this mechanism randomizes the signing
node. For each block, this operation will be repeated 4 times.
At each time, other random nodes will be able to sign the
block. Briefly, to add a valid block to the blockchain, 3
random nodes should sign the block after the block creation.

Fig.3. The formation of the blockchain

 In Figure 3, the structure of the blockchain is shown.
First, the basic elements of the block header are formed. The
block header should be valid with valid transactions. Then,
its hash value is the first hash value and used by the 4 signers
consecutively. Each signer will be able to sign the block if its
public key is compatible with the block header hash. The
hash algorithm SHA256 is used to get the new hash values.
The following formula shows the calculation of the next hash
values:

 HN+1 = SHA256(HN SK) (1)

where

HN : The previous hash value,

HN+1 : The next hash value,

SK : The public key of the Kth signer.

 Each signer calculates the next hash values by providing
its public key to Formula 1. The resulting hash value should
be compatible with the order of the signer. If it is compatible,
it signs the resulting hash value and adds to the block header.
If it is not compatible, a suitable signer is needed to sign the
block header hash value. In this blockchain, 4 signers are
needed to complete the mining process of the blocks. The
public keys of the signers are named as “Signer00”,
“Signer01”, “Signer10”, and “Signer11” according to the
binary representation of their order numbers. In each signing
process, the resulting hash values should end with the binary
representation of the signer orders. Therefore, for a signer to
sign a block, its public key should produce a compatible
resulting hash value. In other words, to take role in the
signing process, a characteristic of the signer is considered.
Each signer has exactly the probability of ¼ to contribute to
the signing process. After completing the signing process,
the block is added to the blockchain. This block is easily
verified by all the nodes because it has valid transactions, it
points to the previous block, its header is signed by 4 proper
random signers, and their signatures are verifiable with their
public keys. After successfully adding the block to the
blockchain, the nodes are prepared to add a new valid block
to the blockchain. In this case, the previous hash is the hash
of the updated block header of the last block in the
blockchain lastly signed by the 4th random signer.

The incentive mechanism of the proposed model depends
on the collaboration of the nodes. Nodes are signers, and
they are also miners. They earn mining rewards. First, a
signer builds a block of transactions and completes the first
signing operation. Then, it propagates the signed block to the
network. All signers listen to the network for the signed
blocks. If a signed block comes, they try to complete the
consecutive signing operation. With or without signing, they
also propagate the signed block to the network. By this way,
all signing operations are completed. The last signer also has
a special task for the signed block. After completing the
signing operation, it adds reward transaction to the signed
block. The reward transaction has the account addresses of
the signers with the equally divided reward amount among
the signers. The account addresses are derived from the
public keys of the signers which are included in the block.
Moreover, the last signer sign the complete block to preserve
the consistency of the block. Then, the last signer adds the
block to its local blockchain and also propagates the block to
the network. All signers listen to the network, and they
accept blocks. If they are valid, they add them to their local
blockchains and also propagate them to the network.

 The first signers that are also block creators will not try to
complete all signing operations because each additional step
in the signing process takes as much as the signer count
trials. For the 4-signer case, it is 4 operations. For the
remaining 3 signing steps, 64 trials are needed. This number
also increases exponentially with an increase in the signer

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

52

count. The following formula shows the number of trials
needed to complete signing steps after block creation:

T = cc-1 (2)

where

T : The total number of trials,

c : The signer count

The remaining signing steps can be completed in 3
operations in the network if there are enough number of
different public keys for the 4-signer case. On the other hand,
to complete all the remaining signing steps may take up to
the number of trials in Formula 2. Therefore, each node in
the network would prefer to do mining in collaboration with
the network. In other words, they want to be decentralized.

In the incentive mechanism, the reward account
addresses are not changeable. They are dependent to the
signers of the block. Therefore, mining pools cannot be
formed because mining rewards go directly to the relevant
signers.

In the block header, there is a nonce element. This
element is added to the header because it can be used if it
takes a very long time to add a new valid block to the
blockchain. At that time, the nonce can be incremented, and
the signing process begins from scratch. This time, the
signing process probably will take the usual signing time.

The proposed consensus algorithm is designed with 4
signers. However, the algorithm is flexible to any positive
number of signers like 5 or 8. For example, if the signer
count is 5, the first signer should produce a hash value
ending with “000”. Respectively, the other signers should
produce hash values ending with “001”, “010”, “011”, and
“100”. In this algorithm, the comparison is done in bits. In
other words, binary numbers up to signer count are used for
ending patterns. Therefore, if the power of 2 is used, the
comparisons are done with all the values of the power of 2.
For 8 signers, the power of 2 is 3 exactly, then the signers
will produce hash values ending with “000”, “001”, “010”,
“011”, “100”, “101”, “110”, and “111”.

Fig. 4. A flexible number of signers.

 In Figure 4, the code snippet for a flexible number of
signers is given. The variable “signer_position” is the order
of the signer. The count of signers is kept in the variable
“signer_count”. The logarithm of the count of signers is
taken according to base 2, and it is ceiled to the nearest big
integer to find the length of the comparison bits. The variable
“signer_position” in bits is compared with the last bits of the
hash value according to the found length of comparison bits.
If they are equal, it means that the signer produces the
corresponding pattern, and its hash value is valid.

V. RESULTS AND DISCUSSION

 The proposed algorithm is implemented with a python
program, and the program is executed for 100 miners. Each
miner is represented as a thread in the program. The program
is executed until 10000 blocks are mined in the blockchain.
In Table 1, the mining counts of the 100 miners are shown.
Mining count means the number of blocks mined. In the first
row, the counts of the Miners between 0 and 9 are displayed.
In the second row, the related counts of Miners 10 to 19 are
displayed. In other words, each row displays the mining
counts of 10 miners up to 100 miners.

TABLE I. MINING COUNTS OF 100 MINERS

 0 1 2 3 4 5 6 7 8 9

Miner 0+ 123 115 103 108 123 88 85 90 103 120

Miner 10+ 98 123 98 85 115 108 90 90 90 88

Miner 20+ 113 118 75 63 93 133 70 105 137 100

Miner 30+ 65 75 113 116 65 93 98 105 98 115

Miner 40+ 126 93 74 120 128 88 61 95 100 90

Miner 50+ 98 75 85 135 90 110 88 115 132 105

Miner 60+ 80 135 105 134 105 100 130 85 80 108

Miner 70+ 138 115 133 90 105 113 82 100 113 103

Miner 80+ 109 69 90 103 75 80 118 118 90 93

Miner 90+ 113 107 81 78 75 85 75 70 113 103

The mining counts show that each miner mined at least 61
blocks. The maximum mining count is 138, which is done by
Miner 70. The standard deviation of the counts is 19.0. These
counts and the standard deviation show that each miner

mined around the average 100 blocks. Therefore, all the
nodes in the blockchain network sufficiently took part in
building the blockchain. Namely, the randomness of nodes is
accomplished, and decentralization is realized.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

53

TABLE II. MINING COUNTS OF CENTRALIZED 100 MINERS

 0 1 2 3 4 5 6 7 8 9

Miner 0+ 52 36 53 40 44 47 56 56 46 40

Miner 10+ 53 47 54 49 47 48 40 52 36 41

Miner 20+ 57 60 44 48 53 46 46 50 51 47

Miner 30+ 46 49 52 44 41 50 59 35 48 50

Miner 40+ 68 48 50 46 42 41 52 59 44 46

Miner 50+ 172 150 145 177 135 138 145 157 144 157

Miner 60+ 156 156 144 159 172 169 153 139 170 135

Miner 70+ 153 138 186 146 144 153 128 143 166 172

Miner 80+ 157 130 147 134 161 154 150 149 157 150

Miner 90+ 171 155 156 141 163 144 135 140 154 141

In Table 2, a centralized version is executed again for
10000 blocks. In this case, the first half of the miners are
taken as a group to show the effects of the centralization. In
other words, half of the miners form a pool, which is
simulated by assigning the same private key to the first half
of the miners. The performance of the first half of the miners
decreased in the execution. The total number of blocks added
by the pool is 2409. The remaining 7591 blocks are added by
the solo miners. Therefore, the proposed consensus algorithm
supports the decentralization of blockchain.

Decentralization is the most important property among
the major properties like security and scalability in
blockchain systems. If the blockchain system goes away
from decentralization, the blockchain can probably be
controlled by central authorities. In short, decentralization
should be empowered in the consensus algorithms.

Private keys should be generated randomly to improve
their security. However, there is an alternative to select
directly. Therefore, it is not random. On the other hand, the
public keys are derived from private keys, which are
completely random. Similarly, the hash values of some data
are completely random. In addition to them, digital
signatures are also completely random values. In this work,
the complete randomness property of hash values is used in
the proposed consensus algorithm. The nodes with different
private keys will have more chances in the mining process
and will help the decentralization of the blockchain.

The proposed consensus algorithm tries to maximize
decentralization. On the other hand, the well-known
consensus algorithms are variant of PoW, PoS, and BFT
algorithms. PoW-like algorithms are suitable for pool
mining. Therefore, they tend to become centralized. PoS-like
algorithms depend on the proportion of wealth. Therefore,
they tend to become centralized. BFT-like algorithms depend
on voting mechanisms. In order to empower them against
attacks, they tend to become centralized. In brief, other
algorithms converge to centralization in one of three
dimensions. On the other hand, the proposed consensus
algorithm tends to converge decentralization with an increase
in the signer count.

VI. CONCLUSION

Blockchain networks suffer from centralization problems.
Centralization is contradictory to the spirit of blockchain
technologies. This centralization problem weakens the
blockchain and brings security problems as well. Therefore,
to strengthen the blockchain and make it more secure,
decentralization should be maximized. In this work,
decentralization is achieved using the randomness power of
hash values.

In blockchain networks, a consensus is reached via
consensus algorithms. In this work, decentralization is
attained by implementing a consensus algorithm.

The proposed novel consensus algorithm depends on a
random selection of mining nodes. The randomization is
realized by signing the block header with ordered hash
values. For mining a new block, four random signers are
needed to obtain the desired ordered hash values. In this
work, four is taken as the number of signers. However, this
algorithm can be executed with a different number of
signers. If the number of signers is increased, it will increase
the security of the blockchain.

The proposed model tries to maximize decentralization
because solo mining is more efficient with the collaboration
of other solo miners in the blockchain network than solo
mining without collaboration or pool mining. Solo mining
without collaboration requires many operations, and pool
mining is restricted by distributing mining rewards to the
solo miners directly.

The proposed algorithm needs a few operations for
mining a block. Therefore, it is a scalable consensus
algorithm. Moreover, since this algorithm uses digital
signatures, the consistency of blockchain is increased.

Public keys that are unique and random are used as unique
properties of miners for decentralization. In brief, the
proposed novel consensus algorithm is a scalable consensus
algorithm that increases the decentralization of blockchain
networks with an ordered list of random hash values.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

54

REFERENCES

[1] Gencer, A. E., Basu, S., Eyal, I., van Renesse, R., & Sirer, E. G.
(2018). Decentralization in bitcoin and ethereum networks. arXiv
preprint arXiv:1801.03998.

[2] Sheehan, D., Gleasure, R., Feller, J., O'Reilly, P., Li, S., & Cristiforo,
J. (2017, August). Does Miner Pooling Impact Bitcoin's Ability to
Stay Decentralized?. In Proceedings of the 13th International
Symposium on Open Collaboration (p. 25). ACM.

[3] Boyen, X., Carr, C., & Haines, T. (2016). Blockchain-free
cryptocurrencies: A framework for truly decentralised fast
transactions. Cryptology ePrint Archive, Report 2016/871.

[4] Bitcoinchain. (2019), https://bitcoinchain.com/pools

[5] Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena,
P. (2016, October). A secure sharding protocol for open blockchains.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (pp. 17-30). ACM.

[6] Zamani, M., Movahedi, M., & Raykova, M. (2018, October).
RapidChain: scaling blockchain via full sharding. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security (pp. 931-948). ACM.

[7] Chauhan, A., Malviya, O. P., Verma, M., & Mor, T. S. (2018, July).
Blockchain and scalability. In 2018 IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS-C) (pp.
122-128). IEEE.

[8] Chu, S., & Wang, S. (2018). The Curses of Blockchain
Decentralization. arXiv preprint arXiv:1810.02937.

[9] Bach, L. M., Mihaljevic, B., & Zagar, M. (2018, May). Comparative
analysis of blockchain consensus algorithms. In 2018 41st
International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (pp. 1545-
1550). IEEE.

[10] Gueta, G. G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B.,
Reiter, M. K., and Tomescu, A. (2018). SBFT: a Scalable
Decentralized Trust Infrastructure for Blockchains. arXiv preprint
arXiv:1804.01626.

[11] Liu, J., Li, W., Karame, G., & Asokan, N. (2018). Scalable byzantine
consensus via hardware-assisted secret sharing. IEEE Transactions on
Computers.

[12] Milutinovic, M., He, W., Wu, H., & Kanwal, M. (2016, December).
Proof of luck: An efficient blockchain consensus protocol. In
Proceedings of the 1st Workshop on System Software for Trusted
Execution (p. 2). ACM.

[13] Baird, L. (2016). The swirlds hashgraph consensus algorithm: Fair,
fast, byzantine fault tolerance. Swirlds, Inc. Technical Report
SWIRLDS-TR-2016, 1.

[14] Kogias, E. K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., &
Ford, B. (2016, August). Enhancing bitcoin security and performance
with strong consistency via collective signing. In 25th USENIX
Security Symposium (USENIX Security 16) (pp. 279-296).

[15] Miller, A., Xia, Y., Croman, K., Shi, E., & Song, D. (2016, October).
The honey badger of BFT protocols. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (pp.
31-42). ACM.

[16] Luu, L., Narayanan, V., Baweja, K., Zheng, C., Gilbert, S., & Saxena,
P. (2015). SCP: A Computationally-Scalable Byzantine Consensus
Protocol for Blockchains. IACR Cryptology ePrint Archive, 2015,
1168.

[17] Asayag, A., Cohen, G., Grayevsky, I., Leshkowitz, M., Rottenstreich,
O., Tamari, R., & Yakira, D. (2018). Helix: a scalable and fair
consensus algorithm (pp. 2-1). Technical report, Orbs Research.

[18] Bagaria, V., Kannan, S., Tse, D., Fanti, G., & Viswanath, P. (2018).
Deconstructing the Blockchain to Approach Physical Limits. arXiv
preprint arXiv:1810.08092.

[19] Li, W., Sforzin, A., Fedorov, S., & Karame, G. O. (2017, April).
Towards scalable and private industrial blockchains. In Proceedings
of the ACM Workshop on Blockchain, Cryptocurrencies and
Contracts (pp. 9-14). ACM.

[20] Lee, J. (2018). The Chain of Antichains, Box Protocol: the Dual-
Blockchain and a Stablecoin. arXiv preprint arXiv:1810.11871.

Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I

55

