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Abstract— The central piece of blockchain technologies is 

the consensus algorithm. The consensus is reached via 

consensus algorithms in the distributed network of the 

blockchain. The consensus becomes stronger if nearly all the 

nodes in the blockchain network take part in building the 

blockchain. Even if some nodes misbehave or malfunction, the 

consensus should not break down then. Since blockchain 

networks are distributed, even if some regions of the network 

or some nodes of the network leave, the blockchain network 

should not malfunction and it should be consistent. Therefore, 

the consistency of the blockchain transactions should be 

assured by all the nodes or nearly all the nodes, or most of the 

nodes. In other words, the consensus should be the issue of all 

the nodes. In this work, a novel consensus algorithm is 

presented to diffuse the mission of building the blockchain to 

all the nodes. In other words, the consensus should be the issue 

of all the nodes. In this work, a novel consensus algorithm is 

presented to diffuse the mission of building the blockchain to 

all the nodes. The algorithm increases the randomness of nodes 

and enforces the blockchain network to be more decentralized. 

Randomness is realized by employing the power of 

cryptography, especially by using public keys as a 

characteristic for miners, which are also called signers. 

Moreover, since the algorithm is realized with a few 

operations, it contributes to the scalability of the blockchain. 

Furthermore, digital signatures improve the security level and 

consistency of the blockchain. 
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I.  INTRODUCTION 

Blockchain networks are distributed, and there should be 
consensus in the blockchain transactions. For the consensus, 
there are many methods, and which are known as consensus 
algorithms.  

Since blockchain networks are distributed, even if some 
regions of the network or some nodes of the network leave, 
the blockchain network should not malfunction and it should 
be consistent. Therefore, the consistency of the blockchain 
transactions should be assured by all the nodes or nearly all 
the nodes, or the majority of all the nodes. In other words, 
the consensus should be the issue of all the nodes. Naturally, 
some nodes may not take part in the consensus, worse some 
may behave against consensus. Even in these conditions, a 
consensus should be reached. This well-known and tough 
problem is known as The Byzantine Generals Problem. In 
short, the consensus of the network is under the 
responsibility of all the honest nodes. The number of honest 
nodes should be maximized to maximize the strength of 
consistency. This is decentralization. This means that there 
should not be central authorities. If the consistency is 

controlled by some central authorities, worse by only one 
authority, this is the centralization problem. If such central 
authorities misbehave, they can change the transactions, or 
create new transactions in favor of themselves. In brief, 
decentralization should be maximized in a blockchain 
network. In this work, a consensus algorithm is designed 
mainly for this purpose. 

Against centralization, some consensus algorithms are 
developed. In some of them, the structure of the transactions 
of the blockchain is redesigned, and some graph-based 
structure is proposed. In this work, decentralization is 
empowered by increasing the randomness of the nodes which 
take part in building the blockchain.      

In blockchain technologies, although security is 
empowered by using cryptography, security is very 
important for blockchain technologies. Especially, private 
keys should be kept safe from threats. In this paper, the 
randomness of consensus is realized by using the public keys 
of miners as their special characteristics. These unique 
attributes are used in the mining process, and in the earning 
of mining rewards. For miners, instead of maintaining keys 
with different unique attributes, it is easier to sign suitable 
blocks in the network. In other words, a collaboration of 
network nodes can complete the mining operation fastest. 
Fastest completions bring mining rewards fastest.  

Pool mining is an indicator of centralization in 
blockchain systems. The proposed model eliminates pool 
mining because mining rewards are distributed among 
signers directly. In other words, solo mining, and 
collaboration with the blockchain network is the most 
efficient way to do mining. 

A big problem in blockchain technologies is scalability. 
In other words, the number of transactions processed per 
second is not sufficient for online businesses usually. 
Therefore, to increase scalability, new consensus algorithms 
are proposed day-by-day, and existing algorithms are 
revised. In the proposed consensus algorithm, a few 
operations are needed for the consensus, and this will 
contribute to increasing scalability.   

In the next section, the related work is presented. After 
presenting the methodology, the proposed consensus 
algorithm comes. The experimental results are presented. 
Lastly, the conclusion is made.  

II. RELATED WORK 

Blockchain networks are distributed networks, and in 
distributed networks, a consensus is reached via special 
algorithms. These are known as consensus algorithms. In the 
following, some important consensus algorithms and their 
decentralization characteristics are examined. 

Asian Journal of Convergence in Technology 
ISSN NO: 2350-1146 I.F-5.11

Volume VIII and Issue I 

This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 International License

47



Proof-of-Work (PoW): The PoW algorithm requires 
some amount of work for consensus. This work is proved 
using hash functions. Hash functions are one-way functions, 
which means that its application to an input is easy, and the 
result is got immediately, however, from the result it is 
impossible to find the input. This property of hash functions 
is used to find an output with the desired pattern. The found 
output guarantees that enough effort has been spent. In 
Bitcoin, this algorithm is used for mining. A new block is 
mined nearly in 10 minutes according to the adjusting of the 
difficulty in the algorithm. Then the miner gets the mining 
reward for its effort. And the miner propagates the block to 
other nodes in the blockchain network, and they confirm the 
correctness of the block easily with the help of the one-way 
property of hash functions. After confirmation, the other 
nodes add the block to their local blockchain with 
confidence. The PoW algorithm provides consensus in 
distributed nodes. However, it requires a huge computational 
power, and this power increases exponentially in time. Thus, 
it wastes such an amount of computational power and 
becomes very expensive economically. The huge 
computational power causes miners to form mining pools. 
The disadvantage of mining pools is that blockchain 
becomes centralized. The mining pools may use their powers 
to dictate their own rules to the blockchain network 
stakeholders and demolish the consistency of the blockchain.   

Proof-of-stake (PoS): PoS algorithms are designed to 
prevent resource wastes of PoW algorithms. In PoS, the new 
block is mined by a selected miner who has enough stake in 
terms of cryptocurrencies in the blockchain. The miner 
selection is done proportional to the stake of the miner. This 
would cause undesirable centralization on the side of the 
highest stake owners. To prevent this, a randomization 
method can be applied. In addition to this, the coin-age 
method can be applied. In the coin-age method, not only the 
stakes are used but also the ages of the stakes are considered 
to select the miner. The selected miner uses its digital 
signature to prove the ownership of the stake. The basic PoS 
suffers from the Nothing-at-Stake problem. The selected 
miner may create multiple blocks to gain more fees, and no 
one prevents this. PoS may cause the blockchain network 
centralized because the highest stake owners can direct the 
blockchain.  

Delegated Proof of Stake (DPoS): DPoS is a version of 
the PoS algorithm. PoS resembles a direct democratic 
election whereas DPoS resembles a representative 
democratic election. In DPoS, stakeholders select their 
delegates for mining operations. Then, these delegates 
confirm transactions and blocks, and mine new blocks. This 
representative democracy in consensus algorithm makes the 
blockchain more centralized. Moreover, the delegates may 
behave dishonestly in DPoS. To prevent this dishonesty, the 
cheating delegates can be voted out. 

Leased Proof of Stake (LPoS): LPoS is a version of the 
PoS algorithm. Nodes with low balances increase their 
chances of mining new blocks by leasing stakes of other 
nodes with high balances. Naturally, the leased amount of 
stakes are possessed by original wealth owners during 
leasing, however, it increases the chance of mining new 
blocks for the leasers. If the leaser wins to mine a block, the 
mining reward will be shared among the leaser and the 
original wealth owners proportionally to their stakes. LPoS 

consensus method increases the decentralization of 
blockchain and makes it more secure.    

Proof of Elapsed Time (PoET): PoET consensus 
algorithm is used in IntelLedger which is developed by Intel 
as a blockchain platform. PoET runs in a Trusted Execution 
Environment (TEE), such as Software Guard Extensions 
(SGX) by Intel. Adding new blocks is done by randomly 
selected nodes. Nodes request wait times from TEE which 
produces random wait times. The node with minimum wait 
time is selected as a miner. The TEE also produces the proof 
for the election, and it is easily verified by other nodes. The 
randomness and safety of this consensus algorithm rely on 
specialized hardware such as SGX. This type of device 
guarantees that their executions cannot be tampered with 
externally. The main disadvantage of this algorithm is the 
reliance on such devices, and this conflicts with the 
philosophy of the decentralized blockchain.  

The Practical Byzantine Fault Tolerance (PBFT): PBFT 
is a Byzantine fault tolerance (BFT) consensus protocol. It is 
the first practical solution to Byzantine failures. It uses 
replicated state machines for consensus. In this method, a 
new block is added to the blockchain if more than two-thirds 
of all nodes agree on that block. The PBFT can tolerate the 
malicious activities of one-third of all nodes. In this method, 
the consensus is reached faster and more economically than 
the PoW algorithm. Moreover, nodes without coins can add 
new blocks to the blockchain, unlike the PoS algorithm. 
PBFT is suitable for permissioned blockchains like 
Hyperledger Fabric because the tolerance of PBFT to 
malicious activities is low, and that may prevent reaching 
consensus. Hyperledger Fabric also uses another variant of 
PBFT called SIEVE for chaincode execution.    

Cross-Fault Tolerance (XFT): XFT is a variant of the 
BFT protocol. XFT assumes that a powerful adversary 
cannot easily take the control of the entire network by 
partitioning it into manageable subnetworks that do not 
communicate with each other. Therefore, XFT relaxes the 
BFT approach and simplifies the state machine replication 
problem. If most replicated systems work synchronously and 
correctly, a consensus is reached in XFT. XFT increases the 
decentralization of the blockchain. However, it becomes 
centralized as the probability of malicious attacks is 
decreased.    

Ripple: Ripple is a consensus algorithm that depends on 
the Byzantine fault tolerance model. Ripple requires 80% of 
the agreement for consensus in collectively trusted 
subnetworks. Each trusted subnetwork is managed by a 
special node named as server, and the server keeps the list of 
nodes in its subnetwork called Unique Node List (UNL). If a 
transaction triggered by a node is agreed by 80% of the 
nodes in the UNL, then it is added to the distributed ledger. 
The ledger will be consistent if faulty nodes do not exceed 
20% of the nodes. Decreasing the probability of malicious 
attacks results in centralization in the blockchain.      

Delegated Byzantine Fault Tolerance (dBFT): dBFT is 
like PBFT except for delegation. In PBFT, all nodes take a 
role in adding a new block to the ledger, whereas in dBFT, 
some nodes are chosen as delegates and only they take a role 
in adding new blocks. Therefore, dBFT is more scalable than 
PBFT, but it loses from the decentralization of the network. 
dBFT algorithm is used in NEO cryptocurrency.  
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Federated Byzantine Fault Tolerance (FBFT): FBFT 
algorithm is a variant of the BFT algorithm. In FBFT, large 
numbers of participants can reach a consensus easily. Each 
participant trusts a limited number of other participants. 
Therefore, there are many different groups of participants in 
the network. Each group reaches a consensus internally. If 
there are overlapping transactions in the groups, a global 
consensus should be required. FBFT is more decentralized 
than the PBFT algorithm. However, decentralization is 
decreased with an increase in the security. 

Stellar Consensus Protocol (SCP):  SCP is designed for 
micro-finance services. SCP is a variant of a Federated 
Byzantine Fault Tolerance (FBFT) protocol. In FBFT, each 
node selects its trusted partners. A group of trusted nodes 
forms a quorum slice. In SCP, a node can place in more than 
one quorum slices concurrently. Therefore, quorum slices 
may overlap and build quorums. A quorum is a group of 
nodes that is required to reach an agreement. A consensus is 
reached if a quorum agrees on a statement. SCP has two 
steps for consensus: nomination and ballot. Firstly, the 
nomination step is executed. In this step, candidate values are 
proposed and sent to all the nodes in the quorum for 
agreement. Each node votes for a single candidate value. At 
the end, the values which are selected unanimously go to the 
ballot step in SCP. In the ballot step, federated voting takes 
place and unanimously selected values are aborted or 
accepted. Finally, the aborted values are discarded. If the 
consensus is not reached in the ballot step, a new ballot step 
is initiated using higher values. SCP has high throughput and 
low latency, which is suitable for IoT applications; however, 
its latency should be reduced to milliseconds to be used 
efficiently in IoT applications. SCP like other BFT 
algorithms is sensitive to malicious attacks. Therefore, 
empowering the security of SCP yields centralization. 

Proof of Authority (PoA): PoA is designed for 
permissioned blockchain for high-performance needs. In 
PoA, there are N trusted nodes, which are called authorities. 
Each authority has a unique ID, and it is assumed that most 
of the authorities are honest. In other words, N/2+1 
authorities are assumed as honest. The responsibility of block 
creation is distributed among authorities using a rotation 
schema. For each authority in PoA, there is a special time 
slice to create a new block. There are two implementations of 
PoA: Aura and Clique. PoA is centralized because the 
authorities are predetermined. 

Aura: Aura is an implementation of the PoA algorithm. 
Aura is implemented in Parity Ethereum clients. In Aura, the 
network should be synchronous, and all authorities should be 
synchronized with the same clock. Each authority has a 
special time slice in a round of mining blocks. In that special 
time slices, authorities add transactions to the new block and 
broadcast it to other authorities. If all authorities accept the 
proposed block, the new block is added to the blockchain. 
Because of the predetermined authorities, Aura loses 
decentralization characteristic.     

Clique: Clique is an implementation of PoA algorithm. 
Clique is implemented in Geth, which is a GoLang based 
Ethereum client. In Clique, block creations are done in 
epochs. When an epoch, which is a time period, starts, a 
particular block is broadcasted, which specifies the set of 
authorities. In Clique, epochs and their related leaders and 
authorities are calculated using a formula. In each epoch, 
authorities other than leaders can also propose blocks for 

creation but blocks proposed by non-leaders are delayed. 
Therefore, the block proposed by the leader in the current 
epoch will be probably accepted first for maintaining the 
blockchain.  Clique is centralized because there are a few 
authorities.       

Proof-of-Capacity (PoC): PoC is, which is also known as 
Proof of Space (PoSpace), is like PoW. PoW depends on 
computing power whereas PoC depends on computer 
storage. Miners in PoC increase their chance to mine new 
blocks by storing immense data sets known as plots. This 
algorithm was used in Burstcoin firstly. In Burstcoin, the 
consensus algorithm is implemented in two stages. The first 
stage is called plotting. In this stage, miners create nonces, 
which are repeated hashing of data and miner’s ID using 
Shabal hash algorithm. Calculating nonces using the Shabal 
algorithm is very hard. Therefore, miners calculate nonces in 
advance and store them in the hard disks. For each block 
creation in the network, a puzzle is started. The winner is the 
miner, who has the closest nonce. As miners increase the 
space used for plotting, they get more nonces and increase 
their chance to obtain rewards. PoC is suitable for mining 
pools. Therefore, it becomes centralized. 

Proof-of-Burn (PoB): In PoB, miners send some coins to 
a verifiable and unspendable address, which is called the 
burning of coins. The used addresses are called eater 
addresses, and the coins sent there are unrecoverable and 
cannot be spent again. Those addresses are generated 
randomly and there is no associated private key for them. 
Miners win to mine new blocks proportional to the amounts 
of coins they burned. Therefore, malicious miners will not be 
in the mining of blocks because they will not want to spend 
coins. This method is used in Slimcoin cryptocurrency. The 
more the miners burn coins, the more they have chances to 
win the mining rewards. In PoB, miners will not earn more 
even if they are joined. Therefore, PoB supports 
decentralization. PoB is not suitable for IoT applications 
because it does not have a monetary framework. PoB is 
centralized because the mining ability of nodes increases 
with wealth.     

Proof of Importance (PoI): PoI can be accepted as a 
variant of PoS. In PoS, miners have more chances to add 
new blocks if they hold more coins in their accounts. 
Similarly, in PoI, the chance of adding a new block to the 
blockchain is proportional to the importance of the miners. 
PoI depends on the importance of nodes in the network. The 
importance of a node is determined according to the 
productive activities of that node in addition to its account 
balance. For example, the number of transactions that 
occurred to or from that node can show the importance of the 
node. Miners increase their chance to mine new blocks 
proportional to their importance. PoI is firstly used in NEM 
cryptocurrency. PoI improves decentralization of the 
blockchain network, and it is resistant to Sybil-style attacks. 
PoI has high throughput and comparatively low latency. 
Therefore, it is suitable for IoT applications however it 
depends on a monetary framework, which is not compatible 
with IoT applications. PoI is suitable for mining pools. 
Therefore, it tends to be centralized. 

Proof of Activity (PoAc): PoAc is a combination of PoW 
and PoS algorithms. First, a hash problem is solved by 
miners as in the PoW algorithm. The hash solution is related 
only to the header of the block not to the transactions. 
Transactions are added to the solved block header later. After 
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adding transactions to the block, some validators sign the 
block to reach a consensus. The last part of PoAc is done 
using the PoS algorithm. Since PoAc is a combination of 
PoW and PoS, it is more secure against practical attacks. In 
other words, 51% of attacks drop to nearly zero in PoAc, 
because that kind of attack requires 51% of mining power 
and 51% of all coins at the same time. The cryptocurrencies 
Decred and Espers use the PoAc algorithm in their 
blockchain. Since PoAc has high latency, it is not suitable for 
IoT applications. PoW could lead to centralization of the 
blockchain network, while PoAc tends to decentralize 
because centralized mining power should be reduced to 
obtain rewards proportional to miner stakes. PoW and PoS 
can be considered as centralized. Therefore, PoAc can be 
considered as centralized. 

Casper: Casper is a PoS consensus algorithm for 
transferring the consensus algorithm of Ethereum from PoW 
to PoS. Casper punishes malicious validators by decreasing 
their stakes to solve the problem of Nothing at Stake. 
Moreover, a chain selection rule like the longest chain in 
Bitcoin blockchain is applied for the forks. The selection rule 
is the Greedy Heaviest Observed Subtree (GHOST). In 
GHOST, the fork with the heaviest subtree among the forks 
is selected as the main chain. Casper is a PoS algorithm. 
Therefore, it tends to become centralized. 

Tendermint: Tendermint is a combination of PBFT and 
PoS algorithms for permissioned blockchain. In PBFT, the 
voting power of each node is the same, whereas in 
Tendermint voting powers of the nodes are proportional to 
their stakes. In Tendermint, the voting process has two steps: 
pre-vote and pre-commit. If two-thirds of validators pre-vote 
for the block, the block goes to the pre-commit step. If two-
thirds pre-commit the block, the block is added to the 
blockchain. In Tendermint, validators should lock their coins 
to vote. If they do malicious activities, they are punished. 
Tendermint has high throughput and low latency however it 
is not suitable for IoT applications because it depends on a 
monetary framework. Since Tendermint depends on PBFT 
and PoS algorithms, it is a candidate for centralization. 

Paxos: Paxos is the first consensus algorithm. The nodes 
in Paxos are categorized as proposers, acceptors, and 
learners. In Paxos, a single value is selected from one or 
more values by the acceptors. If the value is accepted by 
most of the acceptors, it means that the consensus is reached, 
and the value is broadcasted to all learners. Paxos is based on 
voting system like PBFT. Therefore, it may become 
centralized. 

Raft: Raft algorithm is proposed after the Paxos 
algorithm. Raft is easier to understand and easier to 
implement than Paxos. Raft is a voting-type algorithm and 
uses log synchronization for data consistency. Nodes have 
different roles as leaders, candidates, and followers. All 
nodes can be candidates. If a candidate gets more than half of 
the votes, it becomes the leader. At this time, a log is copied 
to the followers. Each node checks the health of the leader 
whether it is alive or not. If it is lost, a new leader election is 
performed. In Raft, there are terms, and, in each term, there 
is only one leader. During that term, the leader manages all 
the requests of the clients. Raft can be considered as 
centralized because it uses a voting mechanism.   

Proof-of-Trust (PoT): PoT has four phases for block 
creation. These are leader election, determining validators, 

voting, and chaining. In the leader election phase, a leader is 
selected. In the second phase, the leader determines the 
validators. In the third phase, the validators vote for the 
transactions. In the last phase, validated transactions are 
chained to the blockchain. PoT is scalable and resistant to 
Sybil-type attacks. Mining pools can control PoT. Therefore, 
it becomes centralized. 

Proof of Weight (PoWeight): PoWeight is a type of PoS 
algorithm. In PoWeight, each node is assigned a weight.  The 
weights are calculated according to different factors in 
addition to balances. Filecoin cryptocurrency uses PoWeight, 
and the weights are calculated according to the amount of 
IPFS data. There may be an incentivization problem because 
there is no reward for transaction confirmation. PoWeight is 
suitable for mining pools. Therefore, it becomes centralized. 

Blockchain networks are distributed and should be 
decentralized. Decentralization means that there should not 
be central authorities in the distributed network to reach a 
consensus. In [1], an assessment on decentralization is made. 
Most of the nodes should be able to take a role in the 
decisions of the network, namely in the validation of 
transactions. Moreover, they should be able to take a role to 
record and update those transactions distributedly. Although 
all nodes in the network do not need to trust each other, they 
should reach a consensus in this trustless environment. For 
this reason, there should be no single-point-of-failure in the 
distributed network. 

In blockchain technologies, centralization is a crucial 
problem, and it is contradictory to the soul of blockchain 
technologies. The root cause of centralization is mainly from 
mining pools. In [2], the increasing power of mining pools 
and centralization problems are addressed. In bitcoin 
network, more than 99% of the hash power is produced by 
mining pools [3]. Worse, the three biggest mining pools have 
more than 50% of the total hash power [4]. Therefore, 
instead of decentralization, because of these monopolies, 
blockchain networks become centralized. Centralization 
brings security problems as well.  

To decentralize the blockchain networks, some consensus 
algorithms are designed. In [3], against the centralization 
problem, a graph-based consensus mechanism is proposed. 
Instead of mining blocks, the transactions are mined using a 
proof-of-work mechanism, and a transaction verifies two 
parent transactions and gets mining fees from parent 
transactions that had posted fees before for verification. 
Therefore, the newly mined transactions increase 
confirmations of the parent transactions, and its graph-like 
structure increases the scalability. This transaction-based 
mining supports solo miners instead of mining pools and 
empowers decentralization.  

The randomness of nodes can be provided to achieve 
decentralization. The proposed algorithm uses the 
randomness of cryptography to incorporate all nodes in the 
building of blockchains. Security is also an important issue 
in blockchain networks. Security in blockchain means that 
the transactions should not be changed by unauthorized ones, 
and additionally, new transactions can be added by 
authorized ones. The private keys showing the authorizations 
should be kept secretly. There should not be external threats, 
or the blockchain should be safe from those threats. 

Nowadays, scalability may be the biggest problem in 
blockchain technology. With the term of scalability, the 
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performance scalability of a blockchain network is meant. In 
other words, it means the number of transactions that can be 
processed in the blockchain per second. In [5], near-linear 
scalability is reached by secure sharding of transactions. In 
[6], a highly scalable consensus algorithm is introduced 
based on sharding. In [7], various solutions to scalability are 
analyzed. In [8], the inherent conflicts between scalability 
and decentralization, and key challenges in blockchain 
decentralizations are identified. 

In [9], blockchain consensus algorithms are compared 
based on scalability, method of the algorithm, and security 
risks. In [10], for scalability and centralization problems, a 
new consensus algorithm is proposed based on the BFT 
algorithm. Advanced cryptographic techniques are used to 
enhance the BFT algorithm. 

Variations of BFT algorithms are used mainly to increase 
the transaction throughput of blockchain. In [11], a fast and 
scalable consensus algorithm based on BFT and hardware-
assisted secret sharing is proposed. Similarly, in [12], 
hardware-based security is used to build an efficient 
consensus algorithm named Proof of Luck. In [13], a 
consensus algorithm based on the Swirlds hashgraph data 
structure is presented. It is fast and Byzantine fault-tolerant. 
In [14], a consensus algorithm based on the PBFT algorithm 
is presented for scalability, and strong consistency is 
achieved via collective signing. In [15], a fast and practical 
consensus algorithm based on BFT is implemented in an 
asynchronous structure to achieve high throughput. In [16], a 
scalable Byzantine consensus protocol is designed to add 
several blocks by building random secure committees. In 
[17], a BFT consensus algorithm is presented to order 
transactions in a determined way among nodes to reach 
enough scalability. 

The scalability of blockchain networks is increased using 
additional chains to the main blockchain. In [19], different 
consensus protocols run in satellite chains in parallel to 
increase scalability. In [20], a graph-based consensus 
algorithm is presented, which uses a dual-blockchain to 
increase confirmation efficiency. 

Another approach to the scalability problem of blockchain is 
a functional deconstruction of a building new block. In [18], 
a fast consensus algorithm based on the PoW algorithm is 
implemented by deconstructing the blockchain into its basic 
functionalities. 

III. METHODOLOGY 

Blockchain provides trust and consensus to desired 
systems. To efficiently implement trust and consensus in 
blockchain systems, decentralization of blockchain systems 
should be ensured and perpetuated. In this paper, a novel 
solution is proposed, which depends on the randomness of 
public keys, for decentralization. The steps of the applied 
methodology are the following:  

 Maximizing decentralization of blockchain systems 
is examined 

 Unique attributes that can be used for 
decentralization are determined 

 A blockchain model is designed with the unique 
attributes 

 The blockchain model is proved using simulations 

The most important problems in blockchain systems are 
related to security, scalability, and decentralization. At the 
heart of the blockchain systems, there are consensus 
algorithms. Consensus algorithms are adjusted to optimize 
properties in security, scalability, and decentralization of the 
blockchain systems.  

PoW favors security but it is not compatible with 
scalability and decentralization. On the other hand, PoS is a 
more scalable and decentralized algorithm, but it loses from 
security. The combination of these algorithms is PoAc, 
which tries to optimize all these properties.  

In PBFT, decentralization is supported because all the 
nodes vote for maintaining the blockchain. However, it is 
less scalable because all the nodes are included in the 
chaining process. Therefore, other approaches are applied to 
increase scalability. In dBFT, the voters are limited to a 
group of delegates.  

In this work, decentralization is taken as the most 
important issue for blockchain systems. Without 
decentralization, the meaning of blockchain will be lost.  

Decentralization is improved if the number of nodes in 
the chaining process is increased. If distinct properties of the 
nodes are included in the consensus mechanism, it will 
support decentralization because it will disfavor the joining 
of nodes.  

Distinct features of the nodes may be their IDs, their hash 
values according to some formulas, their private or public 
keys. Public keys can be used to differentiate nodes. Public 
keys, hash values, and signatures are random values because 
no one can predict their values. Therefore, hash values of 
public keys produce random values. This randomness 
property can be used to support decentralization. 

In this work, the randomness property of hash values of 
public keys is considered to find a solution to the 
decentralization problem of blockchain systems. After 
finding the solution, simulations are performed to prove the 
correctness of the solution. 

IV. THE PROPOSED CONSENSUS MECHANISM 

 The proposed algorithm works on a usual blockchain. In 
other words, blocks are chained to the previous blocks with 
the previous block header hashes until to the genesis block. 
Block headers and transactions are kept separately. The 
structure of the blockchain is shown in Figure 1 as a code 
snippet. 

 

Fig.1. Structure of a block header 

 In the block header, four elements are defined as “block”, 
“hash”, “sequence”, and “signers”. The first element is a 
structure named “block”. In the structure, there are ordinary 
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block header elements. The element “index” is used to keep 
the order of the block in the blockchain. The element 
“timestamp” is used to keep the creation time of the block. 
The element “nonce” is added to change the hash of the 
block header. The element “transactions” keeps the pointer to 
the transactions of the block. The element “previous_hash” is 
used to point to the previous block header. The element 
“signer_count” is special to this proposed algorithm. It shows 
the number of signers who should sign the block header. 
Here, this value is set to 4. It means that each block header 
should be signed by 4 signers. The signer count can be 
incremented to contribute to the strength of security. The 
second element of the block header is named “hash”, and it 
keeps the hash value of the ordinary block header. The third 
element is named as “sequence”, which keeps public keys 
and hash values of the combination of previous hash values 
and public keys. The last element of the block header is 
named “signers”, and it keeps the signatures of the signers 
who signed the block header. 

 

Fig.2. Adding a valid block to the blockchain 

 In Figure 2, the pseudocode of adding a valid block to the 
blockchain is depicted. The pseudocode shows that for each 
block, ordered hash values are expected. Assume that each 
node in the blockchain network has only one private key. 
And a node prepares a valid block with valid transactions 
and propagates it to the blockchain network. Each node in 
the network tries to sign the block. Only one-fourth of them 
will be able to sign the block because the end pattern of the 
resulting hash value should be compatible with the 
consecutive signing order. Only one-fourth of the nodes will 
have the ability to sign because the algorithm is designed for 
4 signers. In other words, 4 trials are needed for a signing 
step. Therefore, this mechanism randomizes the signing 
node. For each block, this operation will be repeated 4 times. 
At each time, other random nodes will be able to sign the 
block. Briefly, to add a valid block to the blockchain, 3 
random nodes should sign the block after the block creation. 

 

Fig.3. The formation of the blockchain 

 In Figure 3, the structure of the blockchain is shown. 
First, the basic elements of the block header are formed. The 
block header should be valid with valid transactions. Then, 
its hash value is the first hash value and used by the 4 signers 
consecutively. Each signer will be able to sign the block if its 
public key is compatible with the block header hash. The 
hash algorithm SHA256 is used to get the new hash values. 
The following formula shows the calculation of the next hash 
values: 

                HN+1 = SHA256(HN SK)  (1) 

where 

HN : The previous hash value,   

HN+1 : The next hash value, 

SK : The public key of the Kth signer. 

 

 Each signer calculates the next hash values by providing 
its public key to Formula 1. The resulting hash value should 
be compatible with the order of the signer. If it is compatible, 
it signs the resulting hash value and adds to the block header. 
If it is not compatible, a suitable signer is needed to sign the 
block header hash value. In this blockchain, 4 signers are 
needed to complete the mining process of the blocks. The 
public keys of the signers are named as “Signer00”, 
“Signer01”, “Signer10”, and “Signer11” according to the 
binary representation of their order numbers. In each signing 
process, the resulting hash values should end with the binary 
representation of the signer orders. Therefore, for a signer to 
sign a block, its public key should produce a compatible 
resulting hash value. In other words, to take role in the 
signing process, a characteristic of the signer is considered. 
Each signer has exactly the probability of ¼ to contribute to 
the signing process. After completing the signing process, 
the block is added to the blockchain. This block is easily 
verified by all the nodes because it has valid transactions, it 
points to the previous block, its header is signed by 4 proper 
random signers, and their signatures are verifiable with their 
public keys. After successfully adding the block to the 
blockchain, the nodes are prepared to add a new valid block 
to the blockchain. In this case, the previous hash is the hash 
of the updated block header of the last block in the 
blockchain lastly signed by the 4th random signer. 

The incentive mechanism of the proposed model depends 
on the collaboration of the nodes. Nodes are signers, and 
they are also miners. They earn mining rewards. First, a 
signer builds a block of transactions and completes the first 
signing operation. Then, it propagates the signed block to the 
network. All signers listen to the network for the signed 
blocks. If a signed block comes, they try to complete the 
consecutive signing operation. With or without signing, they 
also propagate the signed block to the network. By this way, 
all signing operations are completed. The last signer also has 
a special task for the signed block. After completing the 
signing operation, it adds reward transaction to the signed 
block. The reward transaction has the account addresses of 
the signers with the equally divided reward amount among 
the signers. The account addresses are derived from the 
public keys of the signers which are included in the block. 
Moreover, the last signer sign the complete block to preserve 
the consistency of the block. Then, the last signer adds the 
block to its local blockchain and also propagates the block to 
the network. All signers listen to the network, and they 
accept blocks. If they are valid, they add them to their local 
blockchains and also propagate them to the network.  

 The first signers that are also block creators will not try to 
complete all signing operations because each additional step 
in the signing process takes as much as the signer count 
trials. For the 4-signer case, it is 4 operations. For the 
remaining 3 signing steps, 64 trials are needed. This number 
also increases exponentially with an increase in the signer 
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count. The following formula shows the number of trials 
needed to complete signing steps after block creation: 

T = cc-1                                            (2) 

where  

T : The total number of trials, 

c : The signer count 

The remaining signing steps can be completed in 3 
operations in the network if there are enough number of 
different public keys for the 4-signer case. On the other hand, 
to complete all the remaining signing steps may take up to 
the number of trials in Formula 2. Therefore, each node in 
the network would prefer to do mining in collaboration with 
the network. In other words, they want to be decentralized. 

In the incentive mechanism, the reward account 
addresses are not changeable. They are dependent to the 
signers of the block. Therefore, mining pools cannot be 
formed because mining rewards go directly to the relevant 
signers. 

In the block header, there is a nonce element. This 
element is added to the header because it can be used if it 
takes a very long time to add a new valid block to the 
blockchain. At that time, the nonce can be incremented, and 
the signing process begins from scratch. This time, the 
signing process probably will take the usual signing time.  

The proposed consensus algorithm is designed with 4 
signers. However, the algorithm is flexible to any positive 
number of signers like 5 or 8. For example, if the signer 
count is 5, the first signer should produce a hash value 
ending with “000”. Respectively, the other signers should 
produce hash values ending with “001”, “010”, “011”, and 
“100”. In this algorithm, the comparison is done in bits. In 
other words, binary numbers up to signer count are used for 
ending patterns. Therefore, if the power of 2 is used, the 
comparisons are done with all the values of the power of 2. 
For 8 signers, the power of 2 is 3 exactly, then the signers 
will produce hash values ending with “000”, “001”, “010”, 
“011”, “100”, “101”, “110”, and “111”. 

 

Fig. 4. A flexible number of signers. 

 In Figure 4, the code snippet for a flexible number of 
signers is given. The variable “signer_position” is the order 
of the signer. The count of signers is kept in the variable 
“signer_count”. The logarithm of the count of signers is 
taken according to base 2, and it is ceiled to the nearest big 
integer to find the length of the comparison bits. The variable 
“signer_position” in bits is compared with the last bits of the 
hash value according to the found length of comparison bits. 
If they are equal, it means that the signer produces the 
corresponding pattern, and its hash value is valid. 

V. RESULTS AND DISCUSSION 

 The proposed algorithm is implemented with a python 
program, and the program is executed for 100 miners. Each 
miner is represented as a thread in the program. The program 
is executed until 10000 blocks are mined in the blockchain. 
In Table 1, the mining counts of the 100 miners are shown. 
Mining count means the number of blocks mined. In the first 
row, the counts of the Miners between 0 and 9 are displayed. 
In the second row, the related counts of Miners 10 to 19 are 
displayed. In other words, each row displays the mining 
counts of 10 miners up to 100 miners. 

TABLE I.  MINING COUNTS OF 100 MINERS 

  0 1 2 3 4 5 6 7 8 9 

Miner 0+ 123 115 103 108 123 88 85 90 103 120 

Miner 10+ 98 123 98 85 115 108 90 90 90 88 

Miner 20+ 113 118 75 63 93 133 70 105 137 100 

Miner 30+ 65 75 113 116 65 93 98 105 98 115 

Miner 40+ 126 93 74 120 128 88 61 95 100 90 

Miner 50+ 98 75 85 135 90 110 88 115 132 105 

Miner 60+ 80 135 105 134 105 100 130 85 80 108 

Miner 70+ 138 115 133 90 105 113 82 100 113 103 

Miner 80+ 109 69 90 103 75 80 118 118 90 93 

Miner 90+ 113 107 81 78 75 85 75 70 113 103 

 

The mining counts show that each miner mined at least 61 
blocks. The maximum mining count is 138, which is done by 
Miner 70. The standard deviation of the counts is 19.0. These 
counts and the standard deviation show that each miner 

mined around the average 100 blocks. Therefore, all the 
nodes in the blockchain network sufficiently took part in 
building the blockchain. Namely, the randomness of nodes is 
accomplished, and decentralization is realized. 
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TABLE II.  MINING COUNTS OF CENTRALIZED 100 MINERS 

  0 1 2 3 4 5 6 7 8 9 

Miner 0+ 52 36 53 40 44 47 56 56 46 40 

Miner 10+ 53 47 54 49 47 48 40 52 36 41 

Miner 20+ 57 60 44 48 53 46 46 50 51 47 

Miner 30+ 46 49 52 44 41 50 59 35 48 50 

Miner 40+ 68 48 50 46 42 41 52 59 44 46 

Miner 50+ 172 150 145 177 135 138 145 157 144 157 

Miner 60+ 156 156 144 159 172 169 153 139 170 135 

Miner 70+ 153 138 186 146 144 153 128 143 166 172 

Miner 80+ 157 130 147 134 161 154 150 149 157 150 

Miner 90+ 171 155 156 141 163 144 135 140 154 141 

 

In Table 2, a centralized version is executed again for 
10000 blocks. In this case, the first half of the miners are 
taken as a group to show the effects of the centralization. In 
other words, half of the miners form a pool, which is 
simulated by assigning the same private key to the first half 
of the miners. The performance of the first half of the miners 
decreased in the execution. The total number of blocks added 
by the pool is 2409. The remaining 7591 blocks are added by 
the solo miners. Therefore, the proposed consensus algorithm 
supports the decentralization of blockchain. 

Decentralization is the most important property among 
the major properties like security and scalability in 
blockchain systems. If the blockchain system goes away 
from decentralization, the blockchain can probably be 
controlled by central authorities. In short, decentralization 
should be empowered in the consensus algorithms.  

Private keys should be generated randomly to improve 
their security. However, there is an alternative to select 
directly. Therefore, it is not random. On the other hand, the 
public keys are derived from private keys, which are 
completely random. Similarly, the hash values of some data 
are completely random. In addition to them, digital 
signatures are also completely random values. In this work, 
the complete randomness property of hash values is used in 
the proposed consensus algorithm. The nodes with different 
private keys will have more chances in the mining process 
and will help the decentralization of the blockchain. 

The proposed consensus algorithm tries to maximize 
decentralization. On the other hand, the well-known 
consensus algorithms are variant of PoW, PoS, and BFT 
algorithms. PoW-like algorithms are suitable for pool 
mining. Therefore, they tend to become centralized. PoS-like 
algorithms depend on the proportion of wealth. Therefore, 
they tend to become centralized. BFT-like algorithms depend 
on voting mechanisms. In order to empower them against 
attacks, they tend to become centralized. In brief, other 
algorithms converge to centralization in one of three 
dimensions. On the other hand, the proposed consensus 
algorithm tends to converge decentralization with an increase 
in the signer count. 

VI. CONCLUSION 

Blockchain networks suffer from centralization problems. 
Centralization is contradictory to the spirit of blockchain 
technologies. This centralization problem weakens the 
blockchain and brings security problems as well. Therefore, 
to strengthen the blockchain and make it more secure, 
decentralization should be maximized. In this work, 
decentralization is achieved using the randomness power of 
hash values.  

In blockchain networks, a consensus is reached via 
consensus algorithms. In this work, decentralization is 
attained by implementing a consensus algorithm.  

The proposed novel consensus algorithm depends on a 
random selection of mining nodes. The randomization is 
realized by signing the block header with ordered hash 
values. For mining a new block, four random signers are 
needed to obtain the desired ordered hash values. In this 
work, four is taken as the number of signers. However, this 
algorithm can be executed with a different number of 
signers. If the number of signers is increased, it will increase 
the security of the blockchain.  

The proposed model tries to maximize decentralization 
because solo mining is more efficient with the collaboration 
of other solo miners in the blockchain network than solo 
mining without collaboration or pool mining. Solo mining 
without collaboration requires many operations, and pool 
mining is restricted by distributing mining rewards to the 
solo miners directly. 

The proposed algorithm needs a few operations for 
mining a block. Therefore, it is a scalable consensus 
algorithm. Moreover, since this algorithm uses digital 
signatures, the consistency of blockchain is increased. 

Public keys that are unique and random are used as unique 
properties of miners for decentralization. In brief, the 
proposed novel consensus algorithm is a scalable consensus 
algorithm that increases the decentralization of blockchain 
networks with an ordered list of random hash values.  
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