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Abstract—This paper contains the performance analysis and
benchmarking of two popular visual SLAM Algorithms: RGB-
DSLAM and RTABMap. The dataset used for the analysis is the
TUM RGBD Dataset from the Computer Vision Group at TUM.
The dataset selected has a large set of image sequences from a
Microsoft Kinect RGB-D sensor with highly accurate and time
synchronized ground truth poses from a motion capture system.
The  test  sequences  selected  depict  a  variety  of  problems  and
camera motions faced by SLAM algorithms for the purpose of
testing the robustness of SLAM algorithms in different situations.
The  evaluation  metrics  used  for  the  comparison  are  Absolute
Trajectory  Error  (ATE)  and  Relative  Pose  Error  (RPE).  The
analysis  involves  comparing  the  Root  Mean  Square  Error
(RMSE)  of  the  two  metrics  and  the  processing  time  for  each
algorithm. This paper serves as an important aid in the selection
of SLAM algorithm for different scenes and camera motions. The
analysis helps to realize the limitations of both SLAM methods.
This  paper  also  points  out  some  underlying  flaws  in  the  used
evaluation metrics

Keywords—Simultaneous  Localization  And  Mapping,
Benchmark, RGBD SLAM, RTABMap

I.
 INTRODUCTION 

Robotic  applications  require  modeling  environment  for
various tasks, guidance, search and rescue, etc. A precondition
for an autonomous robot is to obtain an accurate model of its
environment. A major problem in obtaining this model is the
problem  of  pose  uncertainty.  The  mobile  robot  mapping
problem  under  pose  uncertainty  is  often  referred  to  as  the
simultaneous localization and mapping (SLAM) or Concurrent
Mapping and Localization (CML) problem [1]–[3].

SLAM  is  a  complex  problem  because  a  robot  needs  a
homogeneous map in order to localize itself. To obtain a map,
the robot requires a good estimate of its location. The limited
range and limited field of view of ranging sensor adds to the
problems.  The mutual  dependency among the pose  and  the
map estimates makes the SLAM problem hard. Even a small
error in the map could prevent a robot from working in the
environment.  Hence  it  is  important  to  tackle  the  SLAM
problem.

Many different  techniques to  tackle  the  SLAM problem
have  been  presented.  There  are  different  approaches  to  the
problem like Extended Kalman Filter SLAM (EKF),  Sparse

Extended  Information  Filter  (SEIF),  Extended  Information
Form (EIF),  FastSLAM, GraphSLAM. There are also some
proposed evaluation metrics  [4]–[7]for comparing the results
of  differentSLAM  algorithms.  People  often  use  visual
inspection  to  compare  maps  or  overlays  with  blueprints  of
buildings for grid based estimation techniques.  This kind of
traditional evaluation becomes more and more difficult as new
SLAM  algorithms  show increasing  capabilities.  Meaningful
comparisons  between  different  SLAM  algorithms  require
some  common  performance  metrics.  The  metrics  should
enable the user to compare the outcome of different mapping
approaches  when  applying  them on  the  same  dataset.  This
research  uses  two  such  common evaluation  metrics  on  the
results obtained from popular SLAM algorithms.

This paper utilizes the metrics for evaluation proposed in
[4] to  evaluate  the  performance  of  two  popular  SLAM
methods:  RGB-D  SLAM  [8]and  RTABMap  [9].  The
evaluation  metrics  used  for  the  comparison  are  Absolute
Trajectory Error (ATE) and Relative Pose Error (RPE).

The  TUM  RGB-D  dataset  [10] is  applied  to  both  the
algorithms and the resulting trajectory estimate is compared to
the  ground  truth  by  evaluating  Absolute  Trajectory  Error
(ATE),  Relative  Pose  Error  (RPE)  and  the  time  taken  to
process  the  sequence  of  images.  The  sequences  are
intentionally selected to depict the difficulties encountered by
SLAM algorithms when operating in real world. The results of
the evaluation are analyzed to determine the ideal algorithm
for different situations.

II.
SYSTEM CONFIGURATION

The system used for testing has the following configuration

System Configuration

CPU
Intel Core i7-7700HQ

2.80GHz x 8
Memory 8GB

Operating System Ubuntu 14.04 LTS
OS Type 64-bit

GPU
GeForce GTX 1050

Ti/PCIe/SSE2
Cuda 8.0
SURF Enabled
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SIFT Enabled

Fig. 1. ActiveMedia Pioneer 3 robot

III.
ALGORITHMS SELECTED FOR EVALUATION

A. RGB-D SLAM

RGB-D SLAM  [8]works  well  with  a  hand-held  Kinect-
style  depth sensor. It  uses visual  features  such as SURF or
SIFT tomatch pairs of acquired images, and uses RANSAC to
robustly  estimate  the  3D  transformation  between  them.  To
achieve online processing, the current image is matched only
versus  a  subset  of  the  previous  images.  Subsequently,  it
constructs a graph whose nodes correspond to camera views
and  whose  edges  correspond  to  the  estimated  3D
transformations. The graph is then optimized with HOG-Man
[11]to reduce the accumulated pose errors.

B. RTABMap

RTAB-Map (Real-Time Appearance-Based Mapping) [9]is
a  RGB-D,  Stereo  and  Lidar  Graph-Based  SLAM  approach
based  on  an  incremental  appearance-based  loop  closure
detector.  The  loop  closure  detector  uses  a  bag-of-words
approach to determinate how likely a new image comes from a
previous  location  or  a  new  location.  When  a  loop  closure
hypothesis is accepted, a new constraint is added to the map’s
graph, then a graph optimizer minimizes the errors in the map.
A memory management approach described in  [9] is used to
limit the number of locations used for loop closure detection
and graph optimization, so that real-time constraints on large-
scale environments are always respected. RTAB-Map can be
used alone with a handheld Kinect, a stereo camera or a 3D
LIDAR for 6DoF mapping, or on a robot equipped with a laser
rangefinder for 3DoF mapping.

IV.
DATASET

The TUM RGBD dataset  [10]is a large set  of data with
sequences containing both RGB-D data and ground truth pose
estimates from a motion capture system. The following seven
sequences used in this analysis depict different situations and
intended to test robustness of algorithms in these conditions.

C. freiburg2 desk with person

This sequence is a typical office scene with a person sitting
at a desk. The person moves and interacts with some of the
objects on the table. This sequence is intended for checking
the robustness of a SLAM system against dynamic objects and

persons, but it can also be used to differentiate maps and find
changes in the scene.

A. freiburg2 pioneer 360 robot slam

This sequence was recorded from a Kinect mounted on top
of an ActiveMedia Pioneer 3 robot (See  Fig. 1.). With these
sequences,  it  becomes  possible  to  demonstrate  the
applicability of SLAM systems to wheeled robots. Due to the
large dimensions of the hall, the Kinect could not observe the
depth of the distant walls for parts of the sequence. Several
objects  like office containers,  boxes,  and other  feature-poor
objects are placed through the scene. As a consequence, this
sequence has depth, but is highly challenging for methods that
rely on distinctive keypoints.

B. freiburg2 360 kidnap

In this sequence the Kinect sensor is covered several times
while it is pointed to a different location ("kidnap") for testing
algorithms that can recover from tracking problems.

C. freiburg3 long office household

The RGB-D sensor is moved along a large round through a
household and office scene with much texture and structure.
The end of the trajectory overlaps with the beginning so that
there is a large loop closure.

D. freiburg3 no structure no texture near with loop

The RGB-D sensor is moved in approximately one meter
height along a planar, wooden surface of approximately 3m x
3m.  This  sequence  intentionally  has  little  to  no  visible
structure  and  texture.  The  beginning  and  the  end  of  the
sequence overlaps, i.e., there is a loop closure.

E. freiburg3 no structure texture near with loop

The RGB-D sensor has been moved in one meter height in
a  circle  a  textured,  planar  surface.  The  texture  is  highly
discriminative as it consists of several conference posters. The
beginning and the end of the trajectory overlap, so that there is
a loop closure.

F. freiburg3 sitting static

In  this  sequence,  two  persons  sit  at  a  desk,  talk,  and
gesticulate. The sensor has been kept in place manually. This
sequence  is  intended  to  evaluate  the  robustness  of  visual
SLAM and odometry algorithms to slowly moving dynamic
objects.

V.
EVALUATION METRICS

The output of a SLAM algorithm is an estimated camera
trajectory along with an estimate of the resulting map. While it
is in principle possible to evaluate the quality of the resulting
map, accurate ground truth maps are impossible to obtain as
there are various uncontrollable factors involved. So we base
our analysis on the quality of the estimated trajectory obtained
from a  sequence of  RGB images.  Even though an accurate
trajectory does not imply a good map and error free operation
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of robot, it is the most common parameter used to measure the
accuracy of SLAM algorithms. For the evaluation, we assume
that the output of the algorithm is a sequence of poses from
the  estimated  trajectory P1,⋯ ,Pn∈SE and  from  the
ground truth trajectory Q1,⋯ ,Q n∈SE .

For  simplicity  of  notation,  it  is  assumed  that  the  two
sequences are time-synchronized, equally sampled, and both
have length n. However, in reality, these two sequences vary
in  sampling  rates,  lengths  and  have  missing  data,  so  an
additional data association and interpolation step is required.
Both  sequences  consist  of  homogeneous  transformation
matrices that give the pose of the RGB optical frame of the
RGBD sensor from some other arbitrary reference frame. This
reference  frame  does  not  have  to  be  the  same  for  both
sequences,  i.e.,  the  estimated  sequence  might  start  at  the
origin,  while  the  ground  truth  sequence  is  an  absolute
coordinate frame which was defined during calibration. While,
in principle, the choice of the reference frame on the RGBD
sensor is also arbitrary, the RGB optical frame is used as the
reference because the depth images in the dataset have already
been registered to this frame. In the remainder of this section,
two  common  evaluation  metrics  for  visual  odometry  and
visual SLAM evaluation given in [4][4] are defined.

D. Absolute Trajectory Error (ATE)

For a visual SLAM system, the global consistency of the
estimated  trajectory  is  an  important  quantity.  The  Absolute
Trajectory Error (ATE) is evaluated by comparing the absolute
distances  between  the  estimated  and  the  ground  truth
trajectory. As  both trajectories  can  be  specified  in  arbitrary
coordinate frames, they first need to be aligned. This is done
in closed form by using the method of Horn [12], which finds
the  rigid-body  transformation  S  corresponding  to  the
least-squares  solution  that  maps  the  estimated  trajectory

P1 :n onto  the  ground  truth  trajectory Q1 :n .  The
absolute trajectory error at time step i  can be calculated as

Fi :=Qi
−1S Pi                                 (1)

Evaluating the root mean squared error (RMSE) over all
time indices of the translation components, we get,

RMSE (F1 :n ,∆ )≔( 1n∑i=1

n

‖trans(F i)‖
2)

1
2

(2)

A visualization of the absolute trajectory error is given in
Fig.  2..  Here,  RGB-D SLAM  [8] was  used  to  estimate  the
camera trajectory from the “fr2 360 pioneer slam” sequence.

E. Relative Pose Error (RPE)

The Relative Pose Error measures the local accuracy of the
trajectory  over  a  fixed  time  interval ∆ .Therefore,  the
Relative  Pose  Error  corresponds  to  the  drift  of  the  robot’s
trajectory  which  is  useful  for  the  evaluation  of  visual
odometry systems. We define the relative pose error at time
step i  as

Ei :=(Qi
−1Qi+∆)

−1
(Pi

−1 Pi+∆)
−1

(3)

From a sequence of n  camera poses, we obtain in this
way  m=n−∆  individual relative pose errors along the
sequence. 

Fig. 2. Visualization  of  Absolute  Trajectory  Error  (ATE)  of the estimated
trajectory wrt ground truth trajectory

From  these  errors,  we  propose  to  compute  the  Root
MeanSquared  Error  (RMSE)  over  all  time  indices  of  the
translation component as

RMSE (E1 :n ,∆ )≔( 1
m
∑
i=1

m

‖trans(E i)‖
2)

1
2

(4)

Where trans(Ei)  refers to the translation components
of the Relative Pose Error Ei  . Some prefer to evaluate the
mean error instead of the root mean squared error as it affords
less influence to outliers. Some use the median instead of the
mean,  which  attributes  even  less  influence  to  outliers.  For
visual odometry systems that match consecutive frames„ the
time  parameter  ∆  is  ∆=1  which  is  an  intuitive
choice;  RMSE(E1 :n) then gives the drift per frame. For
systems that use more than one previous frame, larger values
of  ∆ can  also  be  appropriate,  for  example,  ∆=30
gives  the  drift  per  second  on  a  sequence  recorded  at
30 Hz . A common choice is to set ∆=n which means

that the start point is directly compared to the end point. This
metric can be misleading as it penalizes rotational errors in the
beginning  of  a  trajectory  more  than  towards  the  end  [5],
[13]and must not be used. It therefore makes sense to average
over all possible time intervals ∆ , i.e., to calculate

E
RMSE(¿¿1 :n ,∆)

RMSE (E1 :n )≔
1
n
∑
∆=1

n

¿
             (5)
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Note that the computational complexity of this expression is
quadratic  in  the  trajectory  length.  Therefore,  it  is
approximated by calculating it from a fixed number of relative
pose samples.

The RPE can  be  used  to  evaluate  the  global  error  of  a
trajectory by averaging over all possible time intervals.  The
RPE assesses both translational and rotational errors, while the
ATE only assesses the translational errors. Therefore, the RPE
is  always  greater  than  the  ATE  (or  equal  if  there  is  no
rotational  error).  Thus,  the  RPE  metric  gives  us  a  way  to
combine  rotational  and  translational  errors  into  a  single
measure.  However,  rotational  errors  are  also  indirectly
captured by the ATE as it manifest itself in wrong translations.
From  a  practical  perspective,  the  ATE  has  an  intuitive
visualizationwhich facilitates visual inspection. Nevertheless,
the two metrics are strongly correlated.

VI.
RESULTS

The evaluation of both the SLAM methods was carried out
on  the  selected  sequences  from  the  dataset.  The  values  of
Absolute Trajectory Error, Relative Pose Error are root mean
squared. The time required to process the entire sequence was
recorded. All the values were plotted for ease of comparison
(See  Fig.  3.).  The estimated trajectories and detailed results
including min, max, mean, mode, and median values of errors
are available at [14].

VII.
CONCLUSIONS

From  the  obtained  results  it  can  be  concluded  that
RTABMap takes longer to process a sequence than RGB-D
SLAM. The exception being fr2 360 kidnap; the reasons for
which are discussed later on in this section. A general trend
can not be observed from the Absolute Trajectory Error (ATE)
RMSE comparison to clearly suggest which SLAM algorithm
performs  better.  We must  observe  the  estimated  trajectory
from both SLAM algorithms to analyze the problems faced by
each. 

The  estimated  trajectory comparison  for  fr2  360 kidnap
sequence when juxtaposed with the ground truth (See Fig. 4.)
reveals that RTABMap failed to recover after the sensor was
covered. No estimated trajectory exists for the motion after the
covering of the sensor for RTABMap. This is clearly a flaw
with the used evaluation metrics as the evaluation ignores the
motion for  which no poses were generated.  RGB-D SLAM
recovers from the covering of the sensor and generates poses
for  the  motion  afterwards.  Because  of  how  the  evaluation
metrics are defined, RGB-D SLAM could be misidentified as
the worse of  the two algorithms in this situation despite its
recovery from the tracking error. 

The time taken by RTABMap to process the sequence is
less than the time taken by RGB-D SLAM due to the same
reason. RTABMap fails to recover from the tracking problem
and does not process the remaining sequence thus resulting in
a shorter processing time.

In case of fr3 no structure no texture sequence, the same
flaw is  observed  (See  Fig.  5.).  RTABMap fails  to  generate
valid poses for the latter half of the motion. The algorithm lost
tracking due to lack of features in the frame. The algorithm
never recovered and hence we have an incomplete estimation
of the trajectory.

It  must  be  emphasized  that  RTABMap  generates
significantly lesser number of pose pairs for evaluation than
RGB-D SLAM. Hence an accurate comparison is not possible
with the raw estimated trajectories generated by both methods.

(a) Absolute Trajectory Error (RMSE)

(b) Relative Pose Error Translational (RMSE)

(c) Relative Pose Error Rotational (RMSE)
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(d) Time taken to process each sequence

Fig. 3. Result of the benchmark evaluation over seven different sequences

(a)RGB-D SLAM recovers and generates estimated trajectory for the
entire motion except when it sensor was covered

(b)RTABMap fails to generate estimated trajectory after the sensor was
covered

Fig. 4. ATE visualization of fr2 360 kidnap sequence with RGB-D SLAM
and RTABMap

After the analysis of the results it can be concluded that
RGB-D SLAM has a better performance overall in the tested
circumstances  while  ignoring  the  underlying  flaws  in  the
evaluation metrics. It has a shorter processing time. It is better
at  recovering  from  tracking  errors  than  RTABMap.  It  also
sustains fast camera motion much better than RTABMap.

A need for a better evaluation metric was realized due to
the  aforementioned  flaws  in  the  evaluation  metrics  as
observed from the results.
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(a) RGB-D SLAM generates estimated trajectory for the
entire motion

(b)RTABMap fails to generate estimated trajectory after losing track due
to lack of features

Fig. 5. ATE visualization of fr3no structure no texturesequence with 
RGB-D SLAM and RTABMap
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