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Abstract— This paper discusses the work on detecting 

multi-objects such as person and car in thermal image 

captured during night time using deep learning architecture. 

Thermal images are superior to the visible images when it 

comes to the amount of useful information required to detect 

the objects during night time. Thermal imager uses radiation 

emitted by the objects to create an image and improve the 

visibility of objects in a dark environment. Contrast to that, 

visible image does not provide useful information in darkness. 

Hence, it is better to use thermal images to detect objects 

present in darkness. The state-of-the-art, Yolo-v3, deep 

learning convolutional neural network model is the latest 

version of the Yolo model in which the feature extraction layer 

contains a much deeper network. The results of detecting 

person and car in the thermal images obtained by the proposed 

model are compared with the results of Yolo- v3. Experimental 

results show that there is a significant improvement in 

detecting person and car in the thermal images in terms of 

mean average precision (mAP) using the proposed method. 

Keywords—Thermal imaging; Deep Learning; object 

detection; convolutional neural network; Yolo; Multi class 

detection. 

I.  INTRODUCTION  

Surveillance systems have seen development in such a 
short span of time. Also, most major cities have been 
equipped with surveillance cameras which are located at 
tourist destinations, busy intersections, etc., to allow the 
local police and authorities to monitor public places. Due to 
the significant improvement in computer vision technologies 
and the neural network applications in object detection, now-
a-days more interest is focused on making these surveillance 
systems automated. However, these surveillance systems are 
facing difficulties in night vision. Thermal imaging cameras 
can be used in surveillance applications in certain climatic 
conditions like fog, rain, and also in total darkness in which 
visible cameras captured poor images. Thermal images 
detect thermal radiation and they do not need a source of 
illumination to produce an image in the night and can see 
through rain, smoke, light fog (to a definite extent). Thermal 
imaging cameras create and shows little temperature 
variations visible. They are referred to as FLIR (“forward-
looking infrared”). Once associated with additional cameras 
(for example, SWIR or a visible camera) multispectral 
sensors are possible, which takes the advantage of benefits of 
each detection band’s capabilities. Thermal imagers cannot 
see through solid objects, nor can they see-through glass or 
perspex as both materials are having their own thermal 
signature and are opaque to long-wave infrared radiation. 
Classification and detection of objects in the thermal 
imagery have been an active and emerging research area in 
computer vision [3, 10, 18, 26]. Even this application is often 
extended to the domain of personal security, border 
protection, national security, and military surveillance 
operations [2] due to the global terrorist threat. Also, the 

importance of thermal images in the application of self-car 
driving is significant. Many kinds of research are being 
carried out in this domain to translate models into 
deployment in the real-world environments. The main aim of 
the object detection is to classify objects present in the image 
and to administer their actual position. Most of the efforts are 
placed on detecting objects and humans in the RGB images. 
Many successful machine learning algorithms have been 
developed for the detection of objects like full human figures 
[4] or human faces [25] in RGB images. Currently, models 
based on convolutional neural networks are the most 
successful models for detecting objects in RGB images. The 
development of the image recognition task started with the 
great achievement of AlexNet in the ImageNet Large Scale 
Visual Recognition Challenge in 2012 [15]. By using 
convolutional neural networks the performance of object 
detection in the RGB domain has been significantly 
increased. The main concern of object detectors using deep 
neural networks is how the spatial information about the 
object is to be acquired. One of the first approaches to solve 
this problem using deep learning is to extract candidate 
regions from the image using selective search, and 
subsequently classify these regions as if they were individual 
images. This way, the object location is given by the region 
from which it originates. This method was first proposed by 
Girshick et al. [8] who named it Regions with CNN (R-
CNN). More amount of time is required by the model to train 
the network. To resolve a number of the drawbacks of R-
CNN, Fast R-CNN [7] is introduced. In fast R-CNN, the 
image is being fed as an input to CNN to get a convolutional 
feature map rather than feeding the region proposals to the 
CNN. The region of proposals is identified from the 
convolutional feature map. The reason fast R-CNN is faster 
than R-CNN is that every time it is not needed to feed region 
proposals to the convolutional neural network. Instead, the 
convolution operation is performed one time per image and a 
feature map is generated from it. Both R-CNN and Fast R-
CNN uses selective search to find out the region proposals. 
The performance of the network is affected by selective 
search as it is a slow and time-consuming process. 
Therefore, Shaoqing Ren et al. came up with Faster R-CNN 
[23], an object detection algorithm that permits the network 
to learn region proposals by eliminating the selective search 
algorithm. Similar to Fast R-CNN, image is provided to a 
convolutional network as input that provides a convolutional 
feature map. The separate network referred to as Region 
Proposal Network is employed to predict the region 
proposals instead of using a selective search algorithm on the 
feature map. Region of Interest (RoI) pooling layer is used to 
reshape the predicted region proposals which are then used 
to classify the image within the proposed region and predict 
the offset values for the bounding boxes. Most of the earlier 
object detection models use regions to locate the object in 
the image. The network does not examine the entire image. 
Instead, regions of the image that have higher chances of 
containing the object. You Only Look Once (Yolo) is an 
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object detection algorithm that is much different from the 
region based algorithms [20]. It predicts the presence of an 
object, as well as a bounding box, for a fixed size grid that 
tiles the input image, similar to that of DNN based 
regression [24] except that only a single pass through the 
network is sufficient for detection. 

TABLE I.   DARKNET-53 [22]. 

Type filters stride Size Output 

Conv2d 32 3×3 1×1 320×320 

Conv2d 

(×1)res 1 

64 

– 

3×

– 

3 2×

– 

2 160×160 

160×160 

Conv2d 

(×2)res 2 

128 

– 

3×

– 

3 2×

– 

2 80×80 

80×80 

Conv2d 

(×8)res 3 

256 

– 

3×

– 

3 2×

– 

2 40×40 

40×40 

Conv2d 

(×8)res 4 

512 

– 

3×

– 

3 2×

– 

2 20×20 

20×20 

Conv2d 

(×4)res 5 

1024 

– 

3×

– 

3 2×

– 

2 10×10 

10×10 

 
In Yolo, the bounding boxes and the class probabilities 

for these boxes are predicted by a single convolutional 
network. The bounding boxes having the class probability 
more than a threshold value is selected and used to identify 
the object if present in the image. The Yolo model is much 
faster than the other object detection algorithms. The major 
limitation of the Yolo algorithm is that it struggles with tiny 
objects present in the image. To handle small objects, the 
input image is up-scaled before fed to the network. From that 
point forward, many successful CNN architectures have been 
developed for the task of object detection. The 
abovementioned object detection methods depend on the 
models that have been trained on available standard datasets 

such as PASCAL-VOC, MS-COCO, and ImageNet. Less 
availability of such huge datasets in the thermal domain has 
limited the development of such frameworks on thermal 
images. Some researchers came up with a solution of using a 
transfer learning approach for object detection tasks in 
thermal images such as Abbott et al. [1] used a transfer 
learning approach, Yolo architecture trained on high-
resolution thermal images containing vehicles and 
pedestrians is used for the classification of vehicles and 
pedestrians in low-resolution thermal images. Marina Ivai-
Kos [12] also used a transfer learning approach with the 
Yolo framework to train a network on thermal images to 
detect persons. In this paper, we consider the task of object 
detection using the convolutional neural network in images 
captured using thermal cameras. The results obtained by the 
proposed model and Yolo-v3 are compared. For the 
detection task, we use Yolo-v3 [22] and the proposed model. 
Yolo-v3 is one of the faster object detection algorithms. So it 
is a good choice to use Yolo when there is a need for real-
time detection, without loss of too much accuracy. The 
remainder of this paper is organized as follows. Section 2 
gives a brief overview of early versions of the Yolo object 
detection models and the proposed model. Section 3 
describes the experimental setup and details of the dataset. 
Section 4 discusses the results and gives comparisons of 
mAP scores and ends with a conclusion. 

II. THE YOLO OBJECT DETECTOR  

The paper on Yolo [20] depicts the object detection 
model that uses a single convolutional network to correctly 
predict bounding boxes of multiple objects in images as well 
as class confidences for those boxes simultaneously. The 
network architecture of Yolo model consists of 24 
convolutional layers and two fully connected layers. The 
convolutional layers extract features in the images while the 
fully connected layers try to predict the bounding box 
coordinates and their class probabilities. The framework first  

 

 
Fig. 1. Yolo-v3 architecture [14]. 
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divides the input image into an S×S matrix. Two bounding 
boxes and their corresponding class confidences are 
associated with each grid cell, so at max two objects can be 
detected in a cell, and if an object is present in more than one 
cell, then the center cell is taken as a prediction holder for 
that object. When training the network, a bounding box with 
no objects will be assigned a confidence value of zero, a 
bounding box around an object has a confidence value that 
depends on the intersection over-union (IoU) score of the 
ground truth box and the bounding box. Yolo-v2 [13, 21] is 
the extension of the Yolo detector is faster and accurate than 
the previous version (Yolo). This is often as a result of Yolo-
v2 uses some techniques that Yolo didn’t use, like Batch-
Normalization [11] and Anchor Boxes. Batch-Normalization 
is employed to normalize the outputs of hidden layers. This 
makes learning much faster. Anchor-Boxes is an assumption 
on the shapes of the bounding boxes. Since the shapes of 
objects to be detected don’t vary such a lot, therefore there’s 
no ought to realize boxes that do not seem like any of the 
objects we wish to detect. For example, to detect humans the 
shapes of anchor boxes are usually vertical rectangles and it 
is less likely that they are squares or horizontal rectangle. 
Hence, there is ought to search such boxes. This makes 
prediction much faster. It replaces five convolution layers of 
the original model with max-pooling layers and changes the 
approach of generating bounding box proposals. Rather than 
fully connected layers, predefined anchor boxes are used to 
predict the bounding box coordinates for every cell. To 
outline the anchor boxes, Yolo-v2 uses K-means clustering 
in a training set of ground truth bounding boxes where boxes 
translations are relative to a grid cell. One grid cell is 
responsible for detecting 5 bounding boxes, therefore it will 
detect up to 5 boxes on each grid cell. Yolo-v2 often 
struggled with the detection of small objects as there is a loss 
of fine-grained features as the layers down-sampled the 
input. To overcome this, Yolo-v2 used an identity mapping, 
concatenating feature maps from a previous layer to acquire 
low-level features. However, the architecture of Yolo-v2 is 
still lacking with some of the most important elements which 
are now introduced in most of the state-of-the-art algorithms. 

Yolo-v3[22] incorporates residual blocks, skip 
connections and up sampling techniques. It uses a Darknet 
variant, which consists of 53-layer network as shown in 
Table I and it is trained on the COCO dataset [17]. These 53 
layers are used for feature extraction. The newer architecture 
consists of residual skip connections inspired by ResNet [9].  

TABLE II.  SPECIFICATIONS OF THE PROPOSED NETWORK MODEL 

layer kernel stride Output size Skip connection 

Input 

Conv2d 

– 

3×3 

– 

1×1 

320×320×3 

320×320×32 

– 

– 

Conv2d 

(×1)res 1 

3×3 

1×1 

2×2 

1×1 

160×160×64 

160×160×64 

– 

– 

Conv2d 

(×2)res 2 

3×3 

1×1 

2×2 

1×1 

80×80×128 

80×80×128 

– 

– 

Conv2d 

(×8)res 3 

3×3 

1×1 

2×2 

1×1 

40×40×256 

40×40×256 

– 

– 

Conv2d 

(×8)res 4 

3×3 

1×1 

2×2 

1×1 

20×20×512 

20×20×512 

– 

to concat 

Conv2d 

(×4)res 5 

CB 1 

Conv2d 

3×3 

1 

1×1 

3

 

×1,3× 
1×1 

2×2 

1×1 

1×1 

1×1 

10×10×1024 

10×10×1024 

10×10×1024 

10×10×255 

– 

– 

to upsample 

– 

Upsample 

concat 

CB 2 

Conv2d 

– 

–     

1×1,3×3 

1×1 

– 

– 

1×1 

1×1 

20×20×512 

20×20×512 

20×20×512 

20×20×255 

from CB 1 

from res 4,Upsample 

to upsample 

– 

 

For detection task, 53 extra layers are stacked onto it, 
summing up a total of 106 layers fully convolutional 
underlying architecture for Yolo-v3. This is the reason 
behind the slowness of Yolo-v3 compared to previous 
versions of Yolo. The architecture of Yolo-v3 is shown in 
Fig. 1.The detections at three different scales is the most 
important feature of Yolo-v3. The network extracts features 
from these scales using a similar concept to feature pyramid 
networks [16]. In Yolo-v3, 1×1 kernels are applied on 
feature maps of three completely different scales at three 
different layers within the network for detection functions. 
The dimension of the detection kernel is 1×1×(B×(5+C)). 
Here, B is the maximum number of bounding boxes 
predicted by a cell on the feature map, C denotes the number 
of classes, and 5 is for the 4 bounding box coordinates and 
one object class confidence score. For Yolo-v3 trained on 
COCO, B=3, and C=80, therefore the size of the kernel is 
1×1×255. The feature map produced by the kernel obtained 
above has same width and height of the previous feature map 
and has attributes detected along with the depth. The stride 
of the layer or the network is defined as the proportion by 
which it downsamples the input. For an input image of size 
320×320, three scale prediction is done by Yolo-v3, which 
are correctly obtained by downsampling the dimensions of 
the input image by 32, 16 and 8 respectively. The primary 
detection is made at the 82nd layer. The image is down-
sampled by the network for the first 81 layers, such that the 
81st layer contains a stride of 32. The feature map obtained 
here would be of size 10×10. The first detection is made here 
using the 1×1 detection kernel, giving us a 10×10×255 
detected feature map. Then, the feature map from 79th layer 
is subjected to a number of convolutional layers before being 
up sampled by 2× to dimensions of 20×20. The feature map 
obtained above is then depth concatenated with the feature 
map from 61st layer. Then the combined feature maps are 
again subjected to a few 1×1 convolutional layers to fuse the 
features from the previous layer (61). Then, the second 
detection is made at the 94th layer, yielding a detection 
feature map of 20×20×255. An analogous procedure is 
followed once more, where the feature map from layer 91 is 
subjected to few convolutional layers before being depth 
concatenated with a feature map from layer 36. Like before, 
a number of 1×1 convolutional layers follow to fuse the 
information from the previous layer (36). We make the 
ultimate detection at 106th layer, yielding a feature map of 
size 40×40×255. Detections at completely different layers 
facilitate to deal with the difficulty of detecting small objects 
in Yolo-v2. The up sampled layers coupled with the previous 
layers facilitate to preserve the fine-grained features that help 
in detecting small objects. 

In total nine anchor boxes are used by Yolo-v3, three for 
each layer where detection takes place. One ought to use K-
Means clustering to come up with nine anchors to train 
Yolo-v3 on their own dataset and organize them in 
descending order according to dimension. The three biggest 
anchors are assigned to the primary scale, successive three 
for the second scale, and the last three for the third scale. For 
an input image of the identical size, Yolo-v3 predicts more 
number of bounding boxes compared to Yolo-v2. For the 

Asian Journal of Convergence in Technology 
ISSN NO: 2350-1146 I.F-5.11

Volume V Issue III 

www.asianssr.org 3



 

Fig. 2. Network Architecture of the proposed model. 

image resolution of 320×320, Yolo-v2 predicts 
10×10×5=500 boxes. At every grid cell, five anchors are 
used to detect five bounding boxes. On the other hand, Yolo-
v3 predicts bounding boxes at three completely different 
scales. For the same image of size 320×320, 6,300 bounding 
boxes are predicted. This suggests that Yolo-v3 predicts 12× 
the number of boxes predicted by Yolo-v2. Hence, Yolo-v3 
is slower compared to Yolo-v2. The classification 
methodology has additionally been changed in Yolo-v3. 
Earlier in Yolo, soft-max classification is used by the authors 
to classify the confidence scores and take a class with the 
utmost score to be the class of the object contained within 
the bounding box. Soft-max classes rest on the belief that 
classes are mutually exclusive, or in simple words, if an 
object belongs to one class, then it cannot belong to the other 

class. Now, multi-label classification is employed. In this 
case, an object may belong to more than one class 
simultaneously, which is achieved by replacing the soft-max 
classification with logistic regression. Logistic regression 
predicts each class score and multiple labels for an object are 
predicted by using a threshold value. Classes with 
confidence scores higher than this threshold value are 
assigned to the bounding box. The architecture of the 
proposed model shown in Fig. 2 increases the speed with 
acceptable levels of accuracy. It is the shortened version of 
Yolo-v3 formed by removing one of the object detection 
blocks. Out of the three detection blocks of different scales, 
the one with the larger scale which is used for detecting 
small objects is removed. 
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Fig. 3. Precision/recall curves and mAP score of classes person and car for Yolo-v3 (trained on COCO). 

 

Fig. 4. Precision/recall curves and mAP score of classes person and car for proposed model (trained on COCO and thermal dataset). 

The reason for removing that block is, in thermal images 
small objects don’t give proper structure and appears as one 
heated spot and gets dominated by the surrounding which 
gets very difficult for the model to detect and there is a 
chance that it might get false detection. Specifications of the 
proposed network architecture are depicted in Table II. The 
proposed model predicts boxes at 2 different scales. For the 
same image of 320×320, the proposed model predicts 1,500 
bounding boxes. This concludes that Yolo-v3 predicts 4× the 
number of boxes which are predicted by the proposed model. 
Hence, Yolo-v3 is slow compared to the proposed model. 

III. EXPERIMENTAL SETUP  

In order to evaluate the potential of the proposed model, 
the experiments are carried out on the images captured under 
various conditions. All experiments have been performed on 
the system with the following configuration: Intel 7th 

Generation i7-7700k processor, 3.60GHz, GPU NVIDIA 
GeForce GTX 1070, 8GB GPU. The TensorFlow libraries 
are used as a backend to the implementation of the proposed 
network architecture. We are primarily focusing on detecting 
two classes, person and car in thermal images.  

DATASET: We use the FLIR E8-XT camera to prepare a 
dataset of images in the night time under different weather 
conditions. The resolution of the camera is 320×240 pixels. 
We collected images of cars and persons both stationary and 
moving under different lighting and weather conditions. 
Finally, the images taken were manually annotated using 
VGG Image Annotator [5]. We compare the performance of 
three types of networks. First is the state-of-the-art Yolov3 
model pre-trained on a COCO image dataset [17]. Second is 
the extension of Yolo-v3 with additional training on our 
thermal image dataset. The third is the proposed model 
trained on thermal images of our dataset. We compared the 
performance using the mean average precision (mAP) which 

is the one used as a performance metric in PASCAL VOC 
2012 competition [6].  

IV. RESULTS AND DISCUSSION  

Before going for the comparison of results, some 
important terms related to mAP are discussed herewith. 
Precision is the fraction of relevant instances among the 
retrieved instances also called positive predictive value. 
Recall is the fraction of the total amount of relevant 
instances that were actually retrieved which is also called 
sensitivity. Average precision (AP) [19] is a popular metric 
to measure the accuracy of object detectors such as Fast R-
CNN, Faster RCNN, SSD, etc. It finds the area under the 
precision-recall curve. It computes the average precision 
value for recall value over 0 to 1. AP for each class is 
calculated separately. All the predictions made for the 
respective class in all the images are collected and according 
to the predicted confidence level ranked in descending order. 
The prediction is correct if IoU is greater than the threshold 
value. After arranging them in descending order to calculate 
precision and recall for each class, draw the precision versus 
recall curve. Recall value increases as prediction ranking 
goes down while precision is having a zigzag pattern, it 
increases with true positives and decreases with false 
positives. To smooth out the zigzag pattern each of the 
precision value is replaced with the max precision value to 
the right of that recall level. AP of that class is given by the 
area under the obtained curve. Recall and precision value lies 
between 0 and 1. Therefore, AP falls between 0 and 1. mAP 
is the average of AP. In our context, we calculate the AP for 
both classes and average them. Fig. 3 presents the mAP 
score for the original Yolo-v3 model that is not trained with 
the thermal dataset. Fig 4 presents the mAP score for the 
proposed model trained with the thermal dataset. Here, we 
can observe that the mAP score of the Yolo-v3 is 3.97% 
which is very less compared to the proposed model which is 
58.78% as one can be seen in Fig. 4.  
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(a) Visible                        (b) Yolo-v3 (trained on COCO)              (c) Yolo-v3 (trained on                             (d)  Proposed model 

                                                                                                               COCO & thermal dataset) 

Fig. 5. Experimental results obtained using the different scenarios. Results of multiple detection using (a) visible (b) Yolo-v3 (trained on COCO) (c) Yolo-

v3 (trained on COCO & thermal dataset) and (d) Proposed model, respectively. 

 

Images displayed in the results section are acquired in 
different lighting conditions (Fig. 5). We compare the results 
of the proposed model with Yolo-v3 (trained only on COCO 
dataset) and Yolo-v3 (trained on both COCO and thermal 
dataset). The first row of Fig. 5 contains the image of a car 
under dull light. Both models of Yolo-v3 which are 
displayed in Fig. 5(b,c) failed to detect the car present in the 
image (false-negative detection). Proposed model detects the 
car present in the image (see Fig. 5(d)). Even it can be seen 
from the Average Precision (AP) of the class car. Proposed 
model has the highest AP for the class car. Results of the 
second row of Fig. 5 is taken at low light condition, normal 
object detectors trained on the RGB image dataset are unable 
to find the person present in the image using the visible 
image as input (see Fig. 5(a)). Again, both Yolo-v3 models 
failed to identify the person present in the image (false-
negative detection) i.e. Fig. 5(b,c). Proposed model which is 
displayed in Fig. 5(d) detects the person present in the 
image. Even Yolo-v3 which is trained on both COCO and 
the thermal dataset is unable to find the person. Third row of 
Fig. 5, is taken in low light conditions and it contains both 
the classes car and person. Yolo-v3 (Fig. 5(b)) detects the 
person present in the image but it misses some of the 
important features of the person. It is unable to find the car 
present in the image (false-negative detection). Yolo-v3 
trained on the thermal dataset i.e. Fig. 5(c) detects the car 

present in the image but is unable to find the person present 
in the image (false-negative detection). Proposed model is 
able to detect both car as well as person in the image (see 
Fig. 5). Hence, the proposed model is better for multi-object 
detection. The images in the last row of Fig. 5 are taken in 
darkness, it contains a person. Both Yolov3 models failed to 
identify the person present in the image (false-negative 
detection). Proposed model (see Fig. 5(d)) detects the person 
present in the image. Proposed model is detecting both the 
person and car present in the thermal image where both 
Yolo-v3 models are failed to detect. 

V. CONCLUSION 

In this paper, we study and apply the deep learning 
methods available for detection on thermal images. Our idea 
was to collect images for the dataset in night time under low 
light conditions, and also we wanted to include moving and 
stationary objects. As our purpose of the experiment was on 
surveillance, we decided to collect images of person and car 
as they are of major concern.  

We tried to relate the results of different approaches we 
made in detecting persons and cars in thermal images. Our 
initial idea was to use state-of-the-art Yolo-V3 architecture 
to detect two basic classes, person and car in thermal images. 
Even thermal images greatly differ from RGB images in 
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appearance we assumed that Yolo-v3 trained on the COCO 
dataset will still give a reasonable baseline for thermal 
images, but the obtained mAP was 3.97% which is very 
poor. So we trained the model with our custom thermal 
dataset and the results were significantly better with the 
mAP score of 58.84%. Further, we made a few changes to 
the model by removing one of the blocks with an intention to 
reduce the number of parameters. The results obtained are 
relatable to the previous one with the mAP score of 58.78%.  

Through this experiment, we observed that with further 
additional training, Yolo is giving significantly much better 
results. We further plan to extend this experiment by 
focusing on the effect of different hyperparameters on this 
model and also investigate how different weather, range and 
lighting conditions going to affect the result. The idea is to 
make the model much better so that it can be implemented in 
real-time as this application has an enormous scope in 
military, vehicles and in alarm systems in restricted areas. 
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