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Abstract— This paper discusses the work on detecting
multi-objects such as person and car in thermal image
captured during night time using deep learning architecture.
Thermal images are superior to the visible images when it
comes to the amount of useful information required to detect
the objects during night time. Thermal imager uses radiation
emitted by the objects to create an image and improve the
visibility of objects in a dark environment. Contrast to that,
visible image does not provide useful information in darkness.
Hence, it is better to use thermal images to detect objects
present in darkness. The state-of-the-art, Yolo-v3, deep
learning convolutional neural network model is the latest
version of the Yolo model in which the feature extraction layer
contains a much deeper network. The results of detecting
person and car in the thermal images obtained by the proposed
model are compared with the results of Yolo- v3. Experimental
results show that there is a significant improvement in
detecting person and car in the thermal images in terms of
mean average precision (mAP) using the proposed method.

Keywords—Thermal imaging; Deep Learning; object
detection; convolutional neural network; Yolo; Multi class
detection.

. INTRODUCTION

Surveillance systems have seen development in such a
short span of time. Also, most major cities have been
equipped with surveillance cameras which are located at
tourist destinations, busy intersections, etc., to allow the
local police and authorities to monitor public places. Due to
the significant improvement in computer vision technologies
and the neural network applications in object detection, now-
a-days more interest is focused on making these surveillance
systems automated. However, these surveillance systems are
facing difficulties in night vision. Thermal imaging cameras
can be used in surveillance applications in certain climatic
conditions like fog, rain, and also in total darkness in which
visible cameras captured poor images. Thermal images
detect thermal radiation and they do not need a source of
illumination to produce an image in the night and can see
through rain, smoke, light fog (to a definite extent). Thermal
imaging cameras create and shows little temperature
variations visible. They are referred to as FLIR (“forward-
looking infrared”). Once associated with additional cameras
(for example, SWIR or a visible camera) multispectral
sensors are possible, which takes the advantage of benefits of
each detection band’s capabilities. Thermal imagers cannot
see through solid objects, nor can they see-through glass or
perspex as both materials are having their own thermal
signature and are opaque to long-wave infrared radiation.
Classification and detection of objects in the thermal
imagery have been an active and emerging research area in
computer vision [3, 10, 18, 26]. Even this application is often
extended to the domain of personal security, border
protection, national security, and military surveillance
operations [2] due to the global terrorist threat. Also, the
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importance of thermal images in the application of self-car
driving is significant. Many kinds of research are being
carried out in this domain to translate models into
deployment in the real-world environments. The main aim of
the object detection is to classify objects present in the image
and to administer their actual position. Most of the efforts are
placed on detecting objects and humans in the RGB images.
Many successful machine learning algorithms have been
developed for the detection of objects like full human figures
[4] or human faces [25] in RGB images. Currently, models
based on convolutional neural networks are the most
successful models for detecting objects in RGB images. The
development of the image recognition task started with the
great achievement of AlexNet in the ImageNet Large Scale
Visual Recognition Challenge in 2012 [15]. By using
convolutional neural networks the performance of object
detection in the RGB domain has been significantly
increased. The main concern of object detectors using deep
neural networks is how the spatial information about the
object is to be acquired. One of the first approaches to solve
this problem using deep learning is to extract candidate
regions from the image using selective search, and
subsequently classify these regions as if they were individual
images. This way, the object location is given by the region
from which it originates. This method was first proposed by
Girshick et al. [8] who named it Regions with CNN (R-
CNN). More amount of time is required by the model to train
the network. To resolve a number of the drawbacks of R-
CNN, Fast R-CNN [7] is introduced. In fast R-CNN, the
image is being fed as an input to CNN to get a convolutional
feature map rather than feeding the region proposals to the
CNN. The region of proposals is identified from the
convolutional feature map. The reason fast R-CNN is faster
than R-CNN is that every time it is not needed to feed region
proposals to the convolutional neural network. Instead, the
convolution operation is performed one time per image and a
feature map is generated from it. Both R-CNN and Fast R-
CNN uses selective search to find out the region proposals.
The performance of the network is affected by selective
search as it is a slow and time-consuming process.
Therefore, Shaoqing Ren et al. came up with Faster R-CNN
[23], an object detection algorithm that permits the network
to learn region proposals by eliminating the selective search
algorithm. Similar to Fast R-CNN, image is provided to a
convolutional network as input that provides a convolutional
feature map. The separate network referred to as Region
Proposal Network is employed to predict the region
proposals instead of using a selective search algorithm on the
feature map. Region of Interest (Rol) pooling layer is used to
reshape the predicted region proposals which are then used
to classify the image within the proposed region and predict
the offset values for the bounding boxes. Most of the earlier
object detection models use regions to locate the object in
the image. The network does not examine the entire image.
Instead, regions of the image that have higher chances of
containing the object. You Only Look Once (Yolo) is an
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object detection algorithm that is much different from the
region based algorithms [20]. It predicts the presence of an
object, as well as a bounding box, for a fixed size grid that
tiles the input image, similar to that of DNN based
regression [24] except that only a single pass through the
network is sufficient for detection.

TABLE I. DARKNET-53 [22].

Type filters | stride | Size Output
Conv2d 32 3x3 1x1 320%320
Conv2d 64 3x3 2x2 160%160

(x1)res 1 - - - 160x160
Conv2d 128 3x3 2x2 80%80
(x2)res 2 - - - 80x%80
Conv2d 256 3x%3 2%2 40%40
(x8)res 3 - - - 40%x40
Convad 512 3x3 2%2 20x20
(x8)res 4 - - - 20%20
Conv2d 1024 3x3 2x2 10x10
(x4)res 5 - - - 10x10

In Yolo, the bounding boxes and the class probabilities
for these boxes are predicted by a single convolutional
network. The bounding boxes having the class probability
more than a threshold value is selected and used to identify
the object if present in the image. The Yolo model is much
faster than the other object detection algorithms. The major
limitation of the Yolo algorithm is that it struggles with tiny
objects present in the image. To handle small objects, the
input image is up-scaled before fed to the network. From that
point forward, many successful CNN architectures have been
developed for the task of object detection. The
abovementioned object detection methods depend on the
models that have been trained on available standard datasets
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such as PASCAL-VOC, MS-COCO, and ImageNet. Less
availability of such huge datasets in the thermal domain has
limited the development of such frameworks on thermal
images. Some researchers came up with a solution of using a
transfer learning approach for object detection tasks in
thermal images such as Abbott et al. [1] used a transfer
learning approach, Yolo architecture trained on high-
resolution thermal images containing vehicles and
pedestrians is used for the classification of vehicles and
pedestrians in low-resolution thermal images. Marina lvai-
Kos [12] also used a transfer learning approach with the
Yolo framework to train a network on thermal images to
detect persons. In this paper, we consider the task of object
detection using the convolutional neural network in images
captured using thermal cameras. The results obtained by the
proposed model and Yolo-v3 are compared. For the
detection task, we use Yolo-v3 [22] and the proposed model.
Yolo-v3 is one of the faster object detection algorithms. So it
is a good choice to use Yolo when there is a need for real-
time detection, without loss of too much accuracy. The
remainder of this paper is organized as follows. Section 2
gives a brief overview of early versions of the Yolo object
detection models and the proposed model. Section 3
describes the experimental setup and details of the dataset.
Section 4 discusses the results and gives comparisons of
MAP scores and ends with a conclusion.

Il. THEYOLO OBJECT DETECTOR

The paper on Yolo [20] depicts the object detection
model that uses a single convolutional network to correctly
predict bounding boxes of multiple objects in images as well
as class confidences for those boxes simultaneously. The
network architecture of Yolo model consists of 24
convolutional layers and two fully connected layers. The
convolutional layers extract features in the images while the
fully connected layers try to predict the bounding box
coordinates and their class probabilities. The framework first
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divides the input image into an SxS matrix. Two bounding
boxes and their corresponding class confidences are
associated with each grid cell, so at max two objects can be
detected in a cell, and if an object is present in more than one
cell, then the center cell is taken as a prediction holder for
that object. When training the network, a bounding box with
no objects will be assigned a confidence value of zero, a
bounding box around an object has a confidence value that
depends on the intersection over-union (loU) score of the
ground truth box and the bounding box. Yolo-v2 [13, 21] is
the extension of the Yolo detector is faster and accurate than
the previous version (Yolo). This is often as a result of Yolo-
V2 uses some techniques that Yolo didn’t use, like Batch-
Normalization [11] and Anchor Boxes. Batch-Normalization
is employed to normalize the outputs of hidden layers. This
makes learning much faster. Anchor-Boxes is an assumption
on the shapes of the bounding boxes. Since the shapes of
objects to be detected don’t vary such a lot, therefore there’s
no ought to realize boxes that do not seem like any of the
objects we wish to detect. For example, to detect humans the
shapes of anchor boxes are usually vertical rectangles and it
is less likely that they are squares or horizontal rectangle.
Hence, there is ought to search such boxes. This makes
prediction much faster. It replaces five convolution layers of
the original model with max-pooling layers and changes the
approach of generating bounding box proposals. Rather than
fully connected layers, predefined anchor boxes are used to
predict the bounding box coordinates for every cell. To
outline the anchor boxes, Yolo-v2 uses K-means clustering
in a training set of ground truth bounding boxes where boxes
translations are relative to a grid cell. One grid cell is
responsible for detecting 5 bounding boxes, therefore it will
detect up to 5 boxes on each grid cell. Yolo-v2 often
struggled with the detection of small objects as there is a loss
of fine-grained features as the layers down-sampled the
input. To overcome this, Yolo-v2 used an identity mapping,
concatenating feature maps from a previous layer to acquire
low-level features. However, the architecture of Yolo-v2 is
still lacking with some of the most important elements which
are now introduced in most of the state-of-the-art algorithms.

Yolo-v3[22] incorporates residual  blocks, skip
connections and up sampling techniques. It uses a Darknet
variant, which consists of 53-layer network as shown in
Table I and it is trained on the COCO dataset [17]. These 53
layers are used for feature extraction. The newer architecture
consists of residual skip connections inspired by ResNet [9].

TABLE II. SPECIFICATIONS OF THE PROPOSED NETWORK MODEL
layer kernel stride | Output size Skip connection
Input - - 320x320x3 -

Conv2d 3x3 1x1 | 320x320x32 -
Conv2d 3x3 2x2 160x160x64 -
(x1)res 1 1x1 1x1 160x160x64 -
Conv2d 3x3 2x2 80x80x128 -
(x2)res 2 1x1 1x1 80x80x128 -
Conv2d 3x3 2x2 40x40x256 -
(x8)res 3 1x1 1x1 40x40x256 -
Conv2d 3x3 2x2 20x20x512 -
(x8)res 4 1x1 1x1 20x20x512 to concat
Convad 3x3 2x2 10x10x1024 -
(x4)res 5 1x1 1x1 10x10x1024 -
CB1 1 3 1x1 10x10x1024 to upsample
Conv2d x1,3x 1x1 10x10x255 -
1x1
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Upsample - - 20x20x512 fromCB 1
concat _ _ 20x20x512 from res4,Upsample
CB2 1x1,3x3 | 1x1 | 20x20x512 to upsample
Conv2d 1x1 1x1 | 20x20x255 -

For detection task, 53 extra layers are stacked onto it,
summing up a total of 106 layers fully convolutional
underlying architecture for Yolo-v3. This is the reason
behind the slowness of Yolo-v3 compared to previous
versions of Yolo. The architecture of Yolo-v3 is shown in
Fig. 1.The detections at three different scales is the most
important feature of Yolo-v3. The network extracts features
from these scales using a similar concept to feature pyramid
networks [16]. In Yolo-v3, 1x1 kernels are applied on
feature maps of three completely different scales at three
different layers within the network for detection functions.
The dimension of the detection kernel is 1x1x(Bx(5+C)).
Here, B is the maximum number of bounding boxes
predicted by a cell on the feature map, C denotes the number
of classes, and 5 is for the 4 bounding box coordinates and
one object class confidence score. For Yolo-v3 trained on
COCO, B=3, and C=80, therefore the size of the kernel is
1x1x255. The feature map produced by the kernel obtained
above has same width and height of the previous feature map
and has attributes detected along with the depth. The stride
of the layer or the network is defined as the proportion by
which it downsamples the input. For an input image of size
320%320, three scale prediction is done by Yolo-v3, which
are correctly obtained by downsampling the dimensions of
the input image by 32, 16 and 8 respectively. The primary
detection is made at the 82nd layer. The image is down-
sampled by the network for the first 81 layers, such that the
81st layer contains a stride of 32. The feature map obtained
here would be of size 10x10. The first detection is made here
using the 1x1 detection kernel, giving us a 10x10x255
detected feature map. Then, the feature map from 79th layer
is subjected to a number of convolutional layers before being
up sampled by 2x to dimensions of 20x20. The feature map
obtained above is then depth concatenated with the feature
map from 61st layer. Then the combined feature maps are
again subjected to a few 1x1 convolutional layers to fuse the
features from the previous layer (61). Then, the second
detection is made at the 94th layer, yielding a detection
feature map of 20x20x255. An analogous procedure is
followed once more, where the feature map from layer 91 is
subjected to few convolutional layers before being depth
concatenated with a feature map from layer 36. Like before,
a number of 1x1 convolutional layers follow to fuse the
information from the previous layer (36). We make the
ultimate detection at 106th layer, yielding a feature map of
size 40x40x255. Detections at completely different layers
facilitate to deal with the difficulty of detecting small objects
in Yolo-v2. The up sampled layers coupled with the previous
layers facilitate to preserve the fine-grained features that help
in detecting small objects.

In total nine anchor boxes are used by Yolo-v3, three for
each layer where detection takes place. One ought to use K-
Means clustering to come up with nine anchors to train
Yolo-v3 on their own dataset and organize them in
descending order according to dimension. The three biggest
anchors are assigned to the primary scale, successive three
for the second scale, and the last three for the third scale. For
an input image of the identical size, Yolo-v3 predicts more
number of bounding boxes compared to Yolo-v2. For the



Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 1.F-5.11

Volume V Issue I11

RES1

)

]

RES3 ¥ _ RES 4

a
m
w
4]

CB1

]

]
—_—

L]

I Detection 1

cB2

C

I Detection 2

e

I e

( ] Leaky ReLu ( |

\ 4

J U U U U L

ResBlock

e

{ J 2D Convolution Layer

- Convolutional Block

‘_‘ Input @ Up Sampling + )

Convolutional Block

Concatenation

D ResBlock

Output

Fig. 2. Network Architecture of the proposed model.

image resolution of 320x320, Yolo-v2 predicts
10x10x5=500 boxes. At every grid cell, five anchors are
used to detect five bounding boxes. On the other hand, Yolo-
v3 predicts bounding boxes at three completely different
scales. For the same image of size 320x320, 6,300 bounding
boxes are predicted. This suggests that Yolo-v3 predicts 12x
the number of boxes predicted by Yolo-v2. Hence, Yolo-v3
is slower compared to Yolo-v2. The classification
methodology has additionally been changed in Yolo-v3.
Earlier in Yolo, soft-max classification is used by the authors
to classify the confidence scores and take a class with the
utmost score to be the class of the object contained within
the bounding box. Soft-max classes rest on the belief that
classes are mutually exclusive, or in simple words, if an
object belongs to one class, then it cannot belong to the other
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class. Now, multi-label classification is employed. In this
case, an object may belong to more than one class
simultaneously, which is achieved by replacing the soft-max
classification with logistic regression. Logistic regression
predicts each class score and multiple labels for an object are
predicted by using a threshold value. Classes with
confidence scores higher than this threshold value are
assigned to the bounding box. The architecture of the
proposed model shown in Fig. 2 increases the speed with
acceptable levels of accuracy. It is the shortened version of
Yolo-v3 formed by removing one of the object detection
blocks. Out of the three detection blocks of different scales,
the one with the larger scale which is used for detecting
small objects is removed.



Asian Journal of Convergence in Technology
ISSN NO: 2350-1146 1.F-5.11

Precision x Recall curve
Class: person, AP: 7.21%

Precision x Recall curve
Class: car, AP: 0.72%

Volume V Issue I11

mAP=3.97

0.02 0.04 0.08 0.08 010 0.000 0.005 0.010

recall

Fig. 3.

Precision x Recall curve
Class: person, AP: 37.47%

Precision x Recall curve
Class: car, AP: 80.10%

0.015 0.020 0025

Precision/recall curves and mAP score of classes person and car for Yolo-v3 (trained on COCO).

mAP=58.78

100 {——— — Precision | 10

010 015 020 025 030 035 040 0.0 0z
recall

000 005

Fig. 4. Precision/recall curves and mAP score of classes person and car for proposed model (trained on COCO and thermal dataset).

The reason for removing that block is, in thermal images
small objects don’t give proper structure and appears as one
heated spot and gets dominated by the surrounding which
gets very difficult for the model to detect and there is a
chance that it might get false detection. Specifications of the
proposed network architecture are depicted in Table II. The
proposed model predicts boxes at 2 different scales. For the
same image of 320x320, the proposed model predicts 1,500
bounding boxes. This concludes that Yolo-v3 predicts 4x the
number of boxes which are predicted by the proposed model.
Hence, Yolo-v3 is slow compared to the proposed model.

I1l.  EXPERIMENTAL SETUP

In order to evaluate the potential of the proposed model,
the experiments are carried out on the images captured under
various conditions. All experiments have been performed on
the system with the following configuration: Intel 7%
Generation i7-7700k processor, 3.60GHz, GPU NVIDIA
GeForce GTX 1070, 8GB GPU. The TensorFlow libraries
are used as a backend to the implementation of the proposed
network architecture. We are primarily focusing on detecting
two classes, person and car in thermal images.

DATASET: We use the FLIR E8-XT camera to prepare a
dataset of images in the night time under different weather
conditions. The resolution of the camera is 320x240 pixels.
We collected images of cars and persons both stationary and
moving under different lighting and weather conditions.
Finally, the images taken were manually annotated using
VGG Image Annotator [5]. We compare the performance of
three types of networks. First is the state-of-the-art Yolov3
model pre-trained on a COCO image dataset [17]. Second is
the extension of Yolo-v3 with additional training on our
thermal image dataset. The third is the proposed model
trained on thermal images of our dataset. We compared the
performance using the mean average precision (mAP) which
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is the one used as a performance metric in PASCAL VOC
2012 competition [6].

IV. RESULTS AND DISCUSSION

Before going for the comparison of results, some
important terms related to mAP are discussed herewith.
Precision is the fraction of relevant instances among the
retrieved instances also called positive predictive value.
Recall is the fraction of the total amount of relevant
instances that were actually retrieved which is also called
sensitivity. Average precision (AP) [19] is a popular metric
to measure the accuracy of object detectors such as Fast R-
CNN, Faster RCNN, SSD, etc. It finds the area under the
precision-recall curve. It computes the average precision
value for recall value over 0 to 1. AP for each class is
calculated separately. All the predictions made for the
respective class in all the images are collected and according
to the predicted confidence level ranked in descending order.
The prediction is correct if loU is greater than the threshold
value. After arranging them in descending order to calculate
precision and recall for each class, draw the precision versus
recall curve. Recall value increases as prediction ranking
goes down while precision is having a zigzag pattern, it
increases with true positives and decreases with false
positives. To smooth out the zigzag pattern each of the
precision value is replaced with the max precision value to
the right of that recall level. AP of that class is given by the
area under the obtained curve. Recall and precision value lies
between 0 and 1. Therefore, AP falls between 0 and 1. mAP
is the average of AP. In our context, we calculate the AP for
both classes and average them. Fig. 3 presents the mAP
score for the original Yolo-v3 model that is not trained with
the thermal dataset. Fig 4 presents the mAP score for the
proposed model trained with the thermal dataset. Here, we
can observe that the mAP score of the Yolo-v3 is 3.97%
which is very less compared to the proposed model which is
58.78% as one can be seen in Fig. 4.
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(a) Visible (b) Yolo-v3 (trained on COCO)

(d) Proposed model

(c) Yolo-v3 (trained on
COCO & thermal dataset)

Fig. 5. Experimental results obtained using the different scenarios. Results of multiple detection using (a) visible (b) Yolo-v3 (trained on COCO) (c) Yolo-
v3 (trained on COCO & thermal dataset) and (d) Proposed model, respectively.

Images displayed in the results section are acquired in
different lighting conditions (Fig. 5). We compare the results
of the proposed model with Yolo-v3 (trained only on COCO
dataset) and Yolo-v3 (trained on both COCO and thermal
dataset). The first row of Fig. 5 contains the image of a car
under dull light. Both models of Yolo-v3 which are
displayed in Fig. 5(b,c) failed to detect the car present in the
image (false-negative detection). Proposed model detects the
car present in the image (see Fig. 5(d)). Even it can be seen
from the Average Precision (AP) of the class car. Proposed
model has the highest AP for the class car. Results of the
second row of Fig. 5 is taken at low light condition, normal
object detectors trained on the RGB image dataset are unable
to find the person present in the image using the visible
image as input (see Fig. 5(a)). Again, both Yolo-v3 models
failed to identify the person present in the image (false-
negative detection) i.e. Fig. 5(b,c). Proposed model which is
displayed in Fig. 5(d) detects the person present in the
image. Even Yolo-v3 which is trained on both COCO and
the thermal dataset is unable to find the person. Third row of
Fig. 5, is taken in low light conditions and it contains both
the classes car and person. Yolo-v3 (Fig. 5(b)) detects the
person present in the image but it misses some of the
important features of the person. It is unable to find the car
present in the image (false-negative detection). Yolo-v3
trained on the thermal dataset i.e. Fig. 5(c) detects the car
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present in the image but is unable to find the person present
in the image (false-negative detection). Proposed model is
able to detect both car as well as person in the image (see
Fig. 5). Hence, the proposed model is better for multi-object
detection. The images in the last row of Fig. 5 are taken in
darkness, it contains a person. Both Yolov3 models failed to
identify the person present in the image (false-negative
detection). Proposed model (see Fig. 5(d)) detects the person
present in the image. Proposed model is detecting both the
person and car present in the thermal image where both
Yolo-v3 models are failed to detect.

V. CONCLUSION

In this paper, we study and apply the deep learning
methods available for detection on thermal images. Our idea
was to collect images for the dataset in night time under low
light conditions, and also we wanted to include moving and
stationary objects. As our purpose of the experiment was on
surveillance, we decided to collect images of person and car
as they are of major concern.

We tried to relate the results of different approaches we
made in detecting persons and cars in thermal images. Our
initial idea was to use state-of-the-art Yolo-V3 architecture
to detect two basic classes, person and car in thermal images.
Even thermal images greatly differ from RGB images in
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appearance we assumed that Yolo-v3 trained on the COCO
dataset will still give a reasonable baseline for thermal
images, but the obtained mAP was 3.97% which is very
poor. So we trained the model with our custom thermal
dataset and the results were significantly better with the
mAP score of 58.84%. Further, we made a few changes to
the model by removing one of the blocks with an intention to
reduce the number of parameters. The results obtained are
relatable to the previous one with the mAP score of 58.78%.

Through this experiment, we observed that with further
additional training, Yolo is giving significantly much better
results. We further plan to extend this experiment by
focusing on the effect of different hyperparameters on this
model and also investigate how different weather, range and
lighting conditions going to affect the result. The idea is to
make the model much better so that it can be implemented in
real-time as this application has an enormous scope in
military, vehicles and in alarm systems in restricted areas.
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