Resolving the Interference in 5G Millimeter WaveThrough Scheduling Technique In Estimated Channel

Jyoti Dange¹, Dr. R.P. Singh², DrVikas Gupta³

1,2</sup>SSSUTMS Sehore, ³ VCOE Vasai

Abstract—In this paper we describe the designing of MIMO(Multiple input and multiple output) system along with scheduling technology which schedule the beam depending on SINR ratio keeping it different from other scheduling techniques like RR and PF techniques. This paper describe the effect of scheduling to compare different parameter for the dynamic resource allocation. Now a days communication industry increasing spontaneously In this late century, use of mobile and cellular services are very common .In the proposed method of SINR scheduling technique signals are scheduled according to their signal to noise plus interference ratio. We tried to develop the effective scheduling technique that support the QPSK and implementing lower complexity into MIMO estimated channel. We resolve the inter cell interference between the base station and destination which causes a large effect system capacity. Intercellular interference become more problematic with the decrease in cell size

Keywords—Mimo ,Millimeter Wave Scheudling Interferencece

I. INTRODUCTION

Incremental improvement in existing communication industry can not sustain a excess of use in application and service of future wireless communication. Most recent two research technology like using a small cell and millimeter wave communication are viral in recent technological world. we are living in the rising time of wireless research .Not only the technological innovation in this field increased but also the service provided by wireless technology have skilled the enormous boom.

The study of wireless communication integrated itself into a redundant industry for example intelligent transport system wireless power transfer ,cyber security system. In the circumstances of cellular communication, extensive research, effort and standardization activities towards the 5G mobile system result to equip the mobile operator guidelines the dimension rules for the resource planning and design of network implementation producing a effective next generation mobile communication. Tremendous increase in he data traffic result in an unsupported incremental improvement in the communication industry. With The increase in the requirement of data ,no connected devices and per link data rate requirement is also growing exponentially. Number of devices connected in the 5G system are increased extensively due to the variety of applications and services planned in the system.

Millimeter wave systems offer very high data rates on account of enormous data transfer limits ,anyway encounters from the poor link budget .Diverse examination in improving the signal strength is accounted for . Use of directional

antenna guarantees better transport if LOS communication corresponds between transmitter and receiver the other elective arrangement is Multi Input Multi Output (MIMO) beam forming that uses the channel measurement to coordinate in this manner improving the multiplexing gain and beam forming gain

As of late, the advances in the silicon technologies have propelled broad research and industrial activities in wireless system in millimeter wave frequency range (30 -300GHZ)At millimeter wave frequencies ,bigger bandwidth is accessible and it can possibly support multi GBPS data rates. One of the most popular band is a unlicensed 60 GHZ band and several standards are in development , wireless personal/ local area network WPAN[08],WLAN[9] Ever increasing demand of high data rate service tends to innovate a communication industry. To achieve this we need to characterize a system performance through the following parameter.

A. Cell edge rate

It is worst case data rate that can be received . The target 5G cell edge data rate range from the 1000MBPS to 1 GBPS".

B. Peak physical data rate

It is a maximum data rate at a fix time.

C. Latency

Providing a ultra low latency is one of the important characteristics of 5G communication . It can be defined as end to end time required to data transfer. For 4G it is 10 to 20 ms. The future wireless technology like two way gamming ,tactile internet and virtual reality

D. Reliability

Another major characteristics is reliability. 5G system provide ultra reliable communication .In Nutshell, it provide a communication aim at the facilitating end to end successful communication of about 99.99%

E. Massive connect

In addition to supporting service, characterized by high data rate, reliability, low latency one of the low complexity and low power. The advantage of this connectivity is increasing no of the devices wide area coverage and deep indoor penetration ex smart metering consist of large no of sensor to collect the data.

II. LITERATURE SURVEY

As mention by the next generation mobile network alliance,5G is eco system that fully connect the personal mobile group and social group [1]The5G mm wave system will take higher density 512 QAM and 1024 QAM encoder decoder to replace64 QAM to 256 QAM IN 4G, so it can have better bandwidth utilization and higher transmission rate in radio frequency efficiency. In addition Multi input output (MIMO) is multi antenna wireless communication system which independently transmit the signal by multiple antenna transmission and simultaneously receive and combine to the original data from a multiple antenna at the receiver since MIMO can significantly increase system throughput and transmission distance without increasingly more bandwidth or transmitting power use ,this new technology attracted a lot of attentions in recent years [2]

We can envision that mm wave system will become popular and common in the future as number fo mm wave devices , system or standard will grow dramatically in the future [3][4] interference issue become more important for the co existence different devices. It is interesting to investigate different scheme for the optimization. The presented usage of generic algorithm demonstrate good performance in terms of SINR improvement and convergence However through investigation on a alternative techniques can be interesting for the further improvement of speed [5]

In MU MIMO operation of two or more user environments 's share the same time frequency resource. several parallel data stream transmitted simultaneously one for each UE . It is assumed that UE feedback the quantized version of observed channel so that BS can be scheduled in MU MIMO mode terminals with the good channel separation.[7]

Block diagonalisation is linear precoding techniques for the downlink of MU MIMO system [6] Modulation matrix is used to preprocessed the signal of each user at the transmitter that lies in 1 the null space of the user channel matrix BD when used with more than one antenna . Another techniques also proposed in [6] ame successive optimization ,address the power minimization and near far problem however the power appropriation and the order in which the user signals are preprocessed . MMSE precoding with SINR scheduling improves the performance of the system [8].But it suffers from the certain interference if only one antenna is used .this can be withdrawn by multiple antenna Granting all this complexity of this technique is high it can provide higher diversity gain and larger gain.

III. CONVENTIONAL BEAM SCHEDULING SCHEMES

A. Round robin scheduling scheme

Conventional beam scheduling scheme are presented as a base line one of the broadly applied scheduling scheme is RR scheduling scheme in which all the beam related with the active UEs in one pico cell are separated into gathering and each gathering is scheduled thus by time opening by without priority but it is simple to implement.[9]

B. Proportionally fair scheduling schemes

Another classical scheduling scheme that can be applied to mm wave communication is PF scheduling scheme [10]

Characterize pf factor of the ith UE in cell as follows

$$PFc, i = RI(t) Ri(t)....$$
 (1)

All active UEs of every cell are organized by their PF factor. Without loss of all inclusive statement, let us expect the PF factor arrangement of UEs subsequent to arranging in Cell c is:

$$PFc, 1 > PFc, 2 > ... > PFc, Uc, c = 1, 2, ... C$$
 (2)

Every active user equipment UE in Pico cell is related to certain serving piller. Just the UE with most north worthy PF priority will be scheduled in the current TTI if multiple UEs are related to one basic bar ,here expecting to multiuser no multiuser multiplexing in one beam .Thus, the first no UEs which are not associated to the same beam will be scheduled in current TTI of Cell.

C. SLNR based scheduling

The leakage power is additionally an important factor to address the interference level in wireless cellular network .In the SLNR based scheduling scheme, the scheduler chooses the beam for one client with the highest SLNR at each progression , computing the interference from beam thought to be chosen to the clients to which beam determination has been performed

IV. SYSTEM MODEL AND PROPOSED SOLUTION

The OFDM method has found one of the most encouraging procedure for next generation wireless communication system .Since OFDM method has contract recurrence selective fading as a flat fading .In fact In single user transmission MIMO could be used for a spatial multiplexing where multiple symbol are to the same user transmitted to the same user we consider 4x4 MIMO user system in which the received vector can be represented as x.k is complex symbol transmitted for the kth user $Hk \in CN \times M$ is the N×M wireless channel matrix from the kth MS to BS and hij \sim CN (0, 1) which represents the channel impulse response coupling the jth antenna at the BS to the independent and identical gaussian distribution

$$YK = HKWX + nk$$
 $k = 1, 2, 3 \dots U.$ (3)

$$X = \left(\begin{array}{c} X1 \\ X2 \\ X3 \\ X4 \end{array} \right) \text{ and } H_K = \left(\begin{array}{cccc} h^k_{11} & h^k12 & h^k13 & h^k14 \\ h^k_{21} & h^k22 & h^k23 & h^k24 \\ h^k_{31} & h^k32 & h^k33 & h^k34 \\ h^k41 & h^k42 & h^k43 & h^k44 \end{array} \right)$$

21

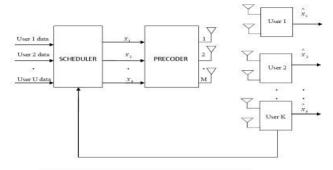


Fig. 1. Block diagram of joint precoder n encoder system

A. Interference Suppression Scheduling Schemes

The ordinary beam scheduling plans are executed in each pico cell without considering effect of interference cause from the neighboring pico cell. In fact measure of interference beam from the cofound picocell is extensive and aggregate interference has a solid effect on the system limit. Interference caused by neighboring pico cell is considerable and SINR interference scheduling scheme is proposed In proposed scheduling scheme ,the scheduled beams are resolved in the stepwise manner among the pico cell in normal mm wave pico station. The target of the scheduling scheme is to focus on maximum proportion of the received power and obstruction between the scheduled beam. UE of all the pico cell in pico station organized agreeing high SINR ratio .one UE with high SINR is selected the related beam of underlying scheduled UE is set as a scheduled beam in set B ={binit} characterize B the complement of set B, which is the arrangement of the scheduled beam of the U=B+B ,the universe set which entire pico station .Now incorporate all beams related dynamic UE of the pico station.

B. SINR based scheduling

In the wireless communication system, SINR is a significant measurement , as a higher SINR just reflect to the higher data rate .In SINR based scheduling plan ,the scheduler choose the bar for one UE for which SINR is most emphasis, figuring the interference for the choose beam of the UE The beam selected for scheduling is determined by:

Sbi, ui
bi=arg max (4)
bi
$$\in$$
B Σ bj \in B I bj,uj + N 0

The beam S biui is received signal power of UE ui from the serving beam bi ,ui is the interference from the scheduled beam bi to UE ui which is active UE with the highest SINR priority associated with beam bi and N0 is the noise power . Note that bi is the beam in scheduling beam set B and bj is scheduled beam at set B .Thus first term in denominator speak to ui aggregate interference. update the scheduling and scheduled beam set as follows

$$B=B U bi, B=B-\{bi\}$$
 (5)

V. RESULT ANALYSIS

A. Bit error rate

In the signal transmission ,no of bit error is no of received bit of the data stream over the communication

channel that have been changed because of noise interference distortion or bit synchronous errors. The bit rate is no. of bit errors per unit time In the communication system cell may be affected by the transmission channel noise, interference distortion, bit synchronization problem , attenuation , wireless multipath fading and so on .The BER may be improved by picking the moderate and solid modulation scheme and solid modulation scheme or line coding scheme and by applying channel coding scheme . In the noisy channel the BER is regularly expressed as component of normalized carrier to noise ratio measured denoted by Eb/NO. On account of QPSK Modulation and AWGN channel ,the BER as a capacity of the Eb/NOis given by

$$BER = 1/2\{ercf\}\{Eb/N0\}$$
 (6)

In data transmission ,Eb/N0(energy per bit to noise power spectral density ratio)is normalized signal to interference noise ratio measure ,It is specially valuable when particularly looking at the bit error rate (BER) performance of various advance modulation scheme. As the description implies Eb is signal energy related with every client data bit ,It is equivalent to the signal power separated by the client bit rate.

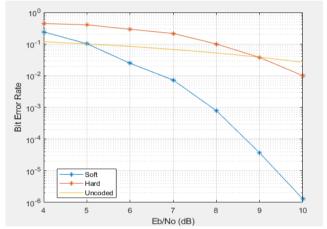


Fig. 2. Shows bit error rate for soft and hard decision decoder

B. CDF

Fig shows the distribution of signal to interference noise at 80 GHZ and 60 GHZ. Ccumulative distribution shows reduction in signal to noise ratio for both the frequencies.

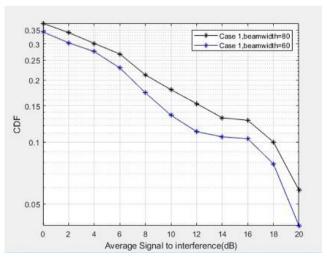


Fig. 3. cdf of signal to noise ratio

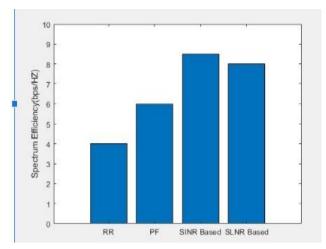


Fig. 4. Spectral efficiency comparison

C. Area spectral efficiency

It is defined as a amount of data network can serve per sec per unit area .Spectral efficiency need to increase 1000 times than 4G .Figure 4 shows comparison of the all scheduling techniques discussed above It shows the clear difference how SINR techniques have given immense performance as compared to other techniques.

VI. CONCLUSION

The SINR beam scheduling scheme is proposed in this work. SINR based scheduling plan for suppressing the interference in the beam .the scheduled beam are determined in step wise manner among the pico cell under one common pico station. Ssimulation result shows that SINR scheduling scheme outperform the RR scheduling scheme, PF scheduling scheme at both 60 and 80 GHZ. The largest cell average spectral efficiency gain is possible with proposed scheme at both 60 and 80 GHZ. over the RR scheduling scheme .The performance of SINR based scheduling scheme is observed and it is very practically identical. Besides the simulation results show that the cell-edge spectrum efficiency of the SINR scheduling scheme is also significantly improved Contrasted with that of the classical RR scheduling scheme and PF scheduling schemes. BER against normalized signal to noise ratio is also reducing when with the soft decision decoder.

REFERENCES

- [1] [NGMN Alliance, NGMN 5G White paper, Version 1, Feb 2015.
- [2] [ZHANG, Di, et al. "Capacity Analysis of NOMA with mmWave Massive MIMO Systems. IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, pp. 1606-1618, 2017.
- [3] S. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, C. Fager, M. Ferndahl, B. Hansson, A. Alping, and P. Hallbjorner, \60 ghz single-chip frontend mmics and systems for multi-gb/s wireless communication," Solid-State Circuits,IEEE Journal of, vol. 42, pp. 1143{1157, May 2007.
- [4] F. Ellinger, Radio Frequency Integrated Circuits and Technologies. Springer, 2008.
- [5] C. Doan, S. Emami, A. Niknejad, and R. Brodersen, \Design of cmos for 60ghz applications," in Solid-State Circuits Conference, 2004. Digest of Technical Papers. ISSCC. 2004 IEEE International, pp. 440{538 Vol.1, Feb 2004.
- [6] Q. Spencer and M. Haardt, "Capacity and downlink transmission algorithms for a multi-user MIMO channel," in Proc. 36th Asilomar Conf. on Signals, Systems, and Computers, Pacific Grove, CA, IEEE Computer Society Press, November 2002.
- [7] V. Stankovic and M. Haardt, "Multi-user MIMO downlink precoding for users with multiple antennas," in Proc. of the 12-th Meeting of the Wireless World Research Forum (WWRF), Toronto, ON, Canada, November 2004. [08] IEEE 802.15 WPAN Task Group 3c (TG3c) Millimeter Wave Alternative PHY: http://www.ieee802.org/15/pub/TG3c.html.
- [8] IEEE 802.11ad Task-Group: http://www.ieee802.org/11/.
- [9] NYU wireless. Avai://nlable at: httpyuwireless.com.
- [10] G. Li, T. Irnich, and C. Shi, \Coordination context-based spectrum sharing for 5G millimeter-wave networks," in Cognitive Radio Oriented Wire-less Networks and Communications (CROWNCOM), 2014 9th Interna- tional Conference on, June 2014, pp. 32{38.
- [11] [11] R. Cai, Q. Chen, X. Peng, and D. Liu, \Spatial sharing algorithm in mmwave WPANs with interference sense beamforming mechanism," in Military Communications Conference, MILCOM 2013 - 2013 IEEE, Nov 2013, pp. 163{168.
- [12] G. Piro, N. Baldo, and M. Miozzo, \An LTE module for the ns-3 network simulator," in Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques, ser. SIMUTools '11. ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2011, pp. 415{422. [Online]. Available: http://dl.acm.org/citation.cfm? id=2151054.2151129
- [13] E. Dahlman, S. Parkvall, J. Skold, and P. Beming., 3G Evolution HSPA and LTE for Mobile Broadband. Academic Press., 2008.
- [14] C. Jeong, J. Park, and H. Yu, \Random access in millimeter-wave beam-forming cellular networks: issues and approaches," Communications Magazine, IEEE, vol. 53, no. 1, pp. 180{185, January 2015.
- [15] Duplicy, Jonathan & Badic, Biljana & Balraj, Rajarajan & Ghaffar, Rizwan & Horváth, Péter & Kaltenberger, Florian & Knopp, R. & Kovács, István & Nguyen, Hung & Tandur, Deepaknath & Vivier, Guillaume. (2011). MU-MIMO in LTE systems. EURASIP J. Wireless Comm. and Networking. 2011. 10.1155/2011/496763. J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68-73.

www.asianssr.org 23