

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 123

Handwritten Character Recognition using Convolutional

Neural Networks in Python with Keras

 Hanu Priya Indiran, Student Member - IEEE, Bachelors in Electronics and Communication Engineering
Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.

hanupriya28@gmail.com

Abstract— In the field of Deep Learning for Computer Vision,

scientists have made many enhancements that helped a lot in the

development of millions of smart devices. On the other hand,

scientists brought a revolutionary change in the field of image

processing and one of the biggest challenges in it is to identify

documents in both printed as well as hand-written formats. One of

the most widely used techniques for the validity of these types of

documents is ‘Character Recognition’. This project seeks to classify

an individual handwritten word so that handwritten text can be

translated to a digital form. It demonstrates the use of neural

networks for developing a system that can recognize handwritten

English alphabets. In this system, each English alphabet is

represented by binary values that are used as input to a simple

feature extraction system, whose output is fed to our neural

network system. The CNN approach is used to accomplish this task:

classifying words directly and character segmentation. For the

former, Convolutional Neural Network (CNN) is used with various

architectures to train a model that can accurately classify words. For

the latter, Long Short Term Memory networks are used with

convolution to construct bounding boxes for each character. We then

pass the segmented characters to a CNN for classification, and then

reconstruct each word according to the results of classification and

segmentation.

Keywords : Computer Vision , CNN, Character Recognition,

Classification, Deep Learning, Neural Networks

I. INTRODUCTION

 Handwritten character recognition is a field of research in

artificial intelligence, computer vision, and pattern recognition.

A computer performing handwriting recognition is said to be

able to acquire and detect characters in paper documents,

pictures, touch-screen devices and other sources and convert

them into machine-encoded form. Its application is found in

optical character recognition and more advanced intelligent

character recognition systems. Most of these systems nowadays

implement machine learning mechanisms such as neural

networks. Machine learning is a branch of artificial intelligence

inspired by psychology and biology that deals with learning

from a set of data and can be applied to solve wide spectrum of

problems. A supervised machine learning model is given

instances of data specific to a problem domain and an answer

that solves the problem for each instance. When learning is

complete, the model is able not only to provide answers to the

data it has learned on, but also to yet unseen data with high

precision. Neural networks are learning models used in machine

learning. Their aim is to simulate the learning process that

occurs in an animal or human neural system. Being one of the

most powerful learning models, they are useful in automation

of tasks where the decision of a human being takes too long, or

is imprecise. A neural network can be very fast at delivering

results and may detect connections between seen instances of

data that humans cannot see. Having acquired the knowledge

that is explained in this text, the neural network has been

implemented on a low level without using libraries that already

facilitate the process. By doing this, we evaluate the

performance of neural networks in the given problem and

provide source code for the network that can be used to solve

many different classification problems. A small step towards

this goal is explored in this work by training a neural network

model to learn which parts of an image are interesting to human

observers that search for a specific object. This knowledge can

then be used to speed up object search in computer vision.

 Adopting the principle of convolution to neural networks

led to convolutional neural networks. The first driving force

behind handwritten text classification was for digit

classification for postal mail. Jacob Rabinowitz early postal

readers incorporated scanning equipment and hardwired logic

to recognize monospaced fonts [1]. Allum et. al improved this by

making a sophisticated scanner which allowed for more

variations in how the text was written as well as encoding the

information onto a barcode that was printed directly on the letter
[2].The first prominent piece of OCR software was invented by

Ray Kurzweil in 1974 as the software allowed for recognition

for any font [3]. This software used a more developed use of the

matrix method (pattern matching). Essentially, this would

compare bitmaps of the template character with the bitmaps of

the read character and would compare them to determine which

character it most closely matched with. The downside was this

software was sensitive to variations in sizing and the

distinctions between each individual's way of writing

II. PROBLEM IDENTIFICATION AND APPROACH

 Despite the abundance of technological writing tools, many

people still choose to take their notes traditionally: with pen and

paper. However, there are drawbacks to handwriting text. It’s

difficult to store and access physical documents in an efficient

manner, search through them efficiently and to share

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 124

them with others. Thus, a lot of important knowledge gets lost

or does not get reviewed because of the fact that documents

never get transferred to digital format. We have thus decided to

tackle this problem in our project because we believe the

significantly greater ease of management of digital text

compared to written text will help people more effectively

access, search, share, and analyze their records, while still

allowing them to use their preferred writing method. The aim

of this project is to further explore the task of classifying

handwritten text and to convert handwritten text into the digital

format.

 Handwritten text is a very general term, and we wanted to
narrow down the scope of the project by specifying the meaning

of handwritten text for our purposes. In this project, we took on

the challenge of classifying the image of any handwritten word,

which might be of the form of cursive or block writing. This

project can be combined with algorithms that segment the word

images in a given line image, which can in turn be combined

with algorithms that segment the line images in a given image

of a whole handwritten page. With these added layers, our

project can take the form of a deliverable that would be used by

an end user, and would be a fully functional model that would

help the user solve the problem of converting handwritten
documents into digital format, by prompting the user to take a

picture of a page of notes. Note that even though there needs to

be some added layers on top of our model to create a fully

functional deliverable for an end user, I believe that the most

interesting and challenging part of this problem is the

classification part, which is why we decided to tackle that using

the Convolutional Neural Networks. I approach this problem

with complete handwritten alphabet images because CNN's

tend to work better on raw input pixels rather than features or

parts of an image [4]. Given our findings using handwritten

alphabets, the program soughts improvement by extracting

characters from the handwritten image and then classifying
each character independently to reconstruct the digital letter. In

summary, in both of our techniques, our models take in an

image of an alphabet which is handwritten and output the

alphabet digitally.

 Two phase processes are involved in the overall processing

of our proposed scheme: the Pre-processing and Neural

network based Recognizing tasks. The pre-processing steps

handle the manipulations necessary for the preparation of the

characters for feeding as input to the neural network system.

First, the required character or part of characters needs to be

extracted from the pictorial representation. The splitting of
alphabets into 25 segment grids, scaling the segments so split

to a standard size and thinning the resultant character segments

to obtain skeletal patterns. The following pre-processing steps

may also be required to furnish the recognition process:

A.. The alphabets can be thinned and their skeletons

obtained using well-known image processing techniques,

before extracting their binary forms.

B. The scanned documents can be “cleaned” and

“smoothed” with the help of image processing techniques for

better performance.

III. DEEP LEARNING

 Deep Learning is an application of artificial intelligence

(AI) that provides systems the ability to automatically learn and

improve from experience without being explicitly programmed.

Deep learning methods aim at learning feature hierarchies with

features from higher levels of the hierarchy formed by the

composition of lower level features. Automatically learning

features at multiple levels of abstraction allow a system to learn
complex functions mapping the input to the output directly from

data, without depending completely on human-crafted

features.Deep learning focuses on the development of computer

programs that can access data and use it to learn for themselves.

The process of learning begins with observations or data, such

as examples, direct experience, or instruction, in order to look

for patterns in data and make better decisions in the future based

on the examples that we provide. The primary aim is to allow

the computers to learn automatically without human

intervention or assistance and adjust actions accordingly. The

algorithms are often categorized as supervised or unsupervised.

(i) Supervised Learning Algorithm

 This algorithm can apply what has been learned in the past

to new data using labeled examples to predict future events.

Starting from the analysis of a known training dataset, the

learning algorithm produces an inferred function to make

predictions about the output values. The system is able to

provide targets for any new input after sufficient training. The

learning algorithm can also compare its output with the correct,
intended output and find errors in order to modify the model

accordingly.

(ii) Unsupervised Learning Algorithm

 In contrast, unsupervised machine learning algorithms are

used when the information used to train is neither classified nor

labeled. Unsupervised learning studies how systems can infer a

function to describe a hidden structure from unlabeled data. The

system doesn’t figure out the right output, but it explores the
data and can draw inferences from datasets to describe hidden

structures from unlabeled data.
 Semi-supervised machine learning algorithms fall

somewhere in between supervised and unsupervised learning,

since they use both labeled and unlabeled data for training –

typically a small amount of labeled data and a large amount of
unlabeled data. The systems that use this method are able to

considerably improve learning accuracy. Usually, semi-

supervised learning is chosen when the acquired labeled data

requires skilled and relevant resources in order to train it or

learn from it. Otherwise, acquiring unlabeled data generally

doesn’t require additional resources.

(iii) Reinforcement Learning Algorithm

 It is a learning method that interacts with its environment by

producing actions and discovers errors or rewards. Trial and

error search and delayed reward are the most relevant

characteristics of reinforcement learning. This method allows

machines and software agents to automatically determine the

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 125

ideal behavior within a specific context in order to maximize its

performance. Simple reward feedback is required for the agent

to learn which action is best; this is known as the reinforcement

signal.

 Machine learning enables analysis of massive quantities of

data. While it generally delivers faster, more accurate results in

order to identify profitable opportunities or dangerous risks, it

may also require additional time and resources to train it

properly. Combining machine learning with AI and cognitive

technologies can make it even more effective in processing

large volumes of information.

IV. NEURAL NETWORK

 The simplest definition of a neural network, more properly

referred to as an 'artificial' neural network (ANN), is provided

by the inventor of one of the first neurocomputers, Dr. Robert

Hecht-Nielsen. He defines a neural network as"...a computing

system made up of a number of simple, highly interconnected

processing elements, which process information by their

dynamic state response to external inputs. In "Neural Network
Primer: Part I" by Maureen Caudill, AI Expert, Feb. 1989.

ANNs are processing devices (algorithms or actual hardware)

that are loosely modeled after the neuronal structure of the

mammalian cerebral cortex but on much smaller scales. A large

ANN might have hundreds or thousands of processor units,

whereas a mammalian brain has billions of neurons with a

corresponding increase in magnitude of their overall interaction

and emergent behavior. Although ANN researchers are

generally not concerned with whether their networks accurately

resemble biological systems, some have. For example,

researchers have accurately simulated the function of the retina

and modeled the eye rather well. Although the mathematics
involved with neural networking is not a trivial matter, a user

can rather easily gain at least an operational understanding of

their structure and function. Neural networks are typically

organized in layers. Layers are made up of a number of

interconnected 'nodes' which contain an 'activation function'.

Patterns are presented to the network via the 'input layer', which

communicates to one or more 'hidden layers' where the actual

processing is done via a system of weighted 'connections'.

 Most ANNs contain some form of 'learning rule' which

modifies the weights of the connections according to the input

patterns that it is presented with. In a sense, ANNs learn by
example as do their biological counterparts; a child learns to

recognize dogs from examples of dogs. Although there are

many different kinds of learning rules used by neural networks,

this demonstration is concerned only with one; the delta rule.

The delta rule is often utilized by the most common class of

ANNs called 'backpropagation neural networks' (BPNNs).

Backpropagation is an abbreviation for the backwards

propagation of error. With the delta rule, as with other types of

backpropagation, 'learning' is a supervised process that occurs

with each cycle or 'epoch' (i.e. each time the network is

presented with a new input pattern) through a forward

activation flow of outputs, and the backwards error propagation
of weight adjustments. The process flow of a neural network is

as per the figure below.

 Figure 4.a

 Neural networks take a different approach to problem

solving than that of conventional computers. Conventional

computers use an algorithmic approach i.e. the computer

follows a set of instructions in order to solve a problem.

 Unless the specific steps that the computer needs to follow

are known the computer cannot solve the problem. That

restricts the problem solving capability of conventional

computers to problems that we already understand and know

how to solve. But computers would be so much more useful if
they could do things that we don't exactly know how to do.

Neural networks process information in a similar way the

human brain does. The network is composed of a large number

of highly interconnected processing elements(neurones)

working in parallel to solve a specific problem. Neural

networks learn by example. They cannot be programmed to

perform a specific task. The examples must be selected

carefully otherwise useful time is wasted or even worse the

network might be functioning incorrectly. The disadvantage is

that because the network finds out how to solve the problem by

itself, its operation can be unpredictable.
 Neural networks and conventional algorithmic computers

are not in competition but complement each other. These tasks

are more suited to an algorithmic approach like arithmetic

operations and tasks that are more suited to neural networks.

Even more, a large number of tasks require systems that use a

combination of the two approaches (normally a conventional

computer is used to supervise the neural network) in order to

perform at maximum efficiency. So this project involves the

Convolutional Neural Networks to analyse the problem and

provide the appropriate solution.

V. MODEL APPROACH

 A neural network is made up of neurons connected to each

other; at the same time, each connection of our neural network

is associated with a weight that dictates the importance of this

relationship in the neuron when multiplied by the input value.

Each neuron has an activation function that defines the output

of the neuron. The activation function is used to introduce non-

linearity in the modeling capabilities of the network. We have

several options for activation functions that we will present in
this post. Training our neural network, that is, learning the

values of our parameters (weights wij and bj biases) is the most

genuine part of Deep Learning and we can see this learning

process in a neural network as an iterative process of “going and

returning” by the layers of neurons. The “going” is a forward

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 126

propagation of the information and the “return” is a

backpropagation of the information. The figure below

illustrates the process.

 Figure 5.a

 The first phase forward propagation occurs when the

network is exposed to the training data and these cross the entire

neural network for their predictions (labels) to be calculated.

That is, passing the input data through the network in such a

way that all the neurons apply their transformation to the

information they receive from the neurons of the previous layer
and sending it to the neurons of the next layer. When the data

has crossed all the layers, and all its neurons have made their

calculations, the final layer will be reached with a result of label

prediction for those input examples. The loss function is used

to estimate the loss (or error) and to compare and measure how

good/bad our prediction result was in relation to the correct

result (remember that we are in a supervised learning

environment and we have the label that tells us the expected

value). Ideally, we want our cost to be zero, that is, without

divergence between estimated and expected value. Therefore,

as the model is being trained, the weights of the

interconnections of the neurons will gradually be adjusted until
good predictions are obtained. Once the loss has been

calculated, this information is propagated backwards. Hence, its

name: backpropagation. Starting from the output layer, that loss

information propagates to all the neurons in the hidden layer

that contribute directly to the output. However, the neurons of

the hidden layer only receive a fraction of the total signal of the

loss, based on the relative contribution that each neuron has

contributed to the original output. This process is repeated,

layer by layer, until all the neurons in the network have received

a loss signal that describes their relative contribution to the total

loss. Visually, It can be summarized with this visual scheme the
stages:

 The various stages are as follows:

A. Back Propagation

B. Loss Function

C. Optimiser

D. Model Parameterisation

E. Epochs

F. Batch Size

G. Learning Rate

H. Initialization of parameter weights

I. Neural Network Methodology

A. Back Propagation

Backpropagation is a method to alter the parameters (weights

and biases) of the neural network in the right direction. It starts

by calculating the loss term first, and then the parameters of the

neural network are adjusted in reverse order with an

optimization algorithm taking into account this calculated
loss.Three arguments are passed to the method: an optimizer, a

loss function, and a list of metrics. In classification problems

like our example, accuracy is used as a metric. Let’s go a little

deeper into these arguments.

B. Loss Function

 A loss function is one of the parameters required to

quantify how close a particular neural network is to the ideal

weight during the training process. The choice of the best

function of loss resides in understanding what type of error is

or is not acceptable for the problem in particular.

C. Optimisers

 The optimizer is another of the arguments required in the

compile() method. Keras currently has different optimizers that

can be used: SGD, RMSprop, Adagrad, Adadelta, Adam,

Adamax, Nadam. In general, the learning process is seen as a

global optimization problem where the parameters (weights and

biases) must be adjusted in such a way that the loss function

presented above is minimized.

D. Model Parameterization

 It is also possible to increase the number of epochs, add more

neurons in a layer or add more layers. However, in these cases,

the gains in accuracy have the side effect of increasing the
execution time of the learning process . We can check with the

summary() method that the number of parameters increases (it

is fully connected) and the execution time is significantly

higher, even reducing the number of epochs. With this model,

the accuracy reaches 94%. And if we increase to 20 epochs, a

96% accuracy is achieved.

E. Epochs

 As we have already done, epochs tells us the number of

times all the training data have passed through the neural
network in the training process. A good clue is to increase the

number of epochs until the accuracy metric with the validation

data starts to decrease, even when the accuracy of the training

data continues to increase (this is when we detect a potential

overfitting).

 F. Batch Size

 As we have said before, we can partition the training data in

mini batches to pass them through the network. In Keras, the

batch_size is the argument that indicates the size of these

batches that will be used in the fit() method in an iteration of

the training to update the gradient. The optimal size will depend

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 127

on many factors, including the memory capacity of the

computer that we use to do the calculations.

G. Learning Rate

 The gradient vector has a direction and a magnitude.

Gradient descent algorithms multiply the magnitude of the

gradient by a scalar known as learning rate (also sometimes

called step size) to determine the next point.

H. Initialisation of parameter weights

 Initialization of the parameters’ weight is not exactly a

hyperparameter, but it is as important as any of them and that is

why we make a brief paragraph in this section. It is advisable to

initialize the weights with small random values to break the

symmetry between different neurons, if two neurons have

exactly the same weights they will always have the same

gradient; that supposes that both have the same values in the

subsequent iterations, so they will not be able to learn different
characteristics. Initializing the parameters randomly following

a standard normal distribution is correct, but it can lead to

possible problems of vanishing gradients (when the values of a

gradient are too small and the model stops learning or takes too

long due to that) or exploding gradients (when the algorithm

assigns an exaggeratedly high importance to the weights).

I. Neural Network Methodology

 This is the step by step building methodology of Neural

Network (MLP with one hidden layer, similar to above-shown

architecture). At the output layer, we have only one neuron as
we are solving a binary classification problem (predict 0 or 1).

We could also have two neurons for predicting each of both

classes.

First look at the broad steps:

We take input and output

● X as an input matrix

● y as an output matrix
Step 1 : We initialize weights and biases with random values

(This is one time initiation. In the next iteration, we will use

updated weights, and biases). Let us define:

● wh as weight matrix to the hidden layer

● bh as bias matrix to the hidden layer

● wout as weight matrix to the output layer

● bout as bias matrix to the output layer

Step 2: We take matrix dot product of input and weights
assigned to edges between the input and hidden layer then add

biases of the hidden layer neurons to respective inputs, this is

known as linear transformation:

hidden_layer_input= matrix_dot_product(X,wh) + bh

Step 3:Perform non-linear transformation using an activation

function (Sigmoid). Sigmoid will return the output as 1/(1 +

exp(-x)).

hiddenlayer_activations = sigmoid(hidden_layer_input)

Step 4: Perform a linear transformation on hidden layer

activation (take matrix dot product with weights and add a bias

of the output layer neuron) then apply an activation function

(again used sigmoid, but you can use any other activation

function depending upon your task) to predict the output

output_layer_input = matrix_dot_product

(hiddenlayer_activations * wout) + bout

output = sigmoid(output_layer_input)

All above steps are known as “Forward Propagation“

Step 5: Compare prediction with actual output and calculate the

gradient of error (Actual – Predicted). Error is the mean square

loss = ((Y-t)^2)/2

E = y – output

Step 6: Compute the slope/ gradient of hidden and output layer

neurons (To compute the slope, we calculate the derivatives of

non-linear activations x at each layer for each neuron). Gradient

of sigmoid can be returned as x * (1 – x).

slope_output_layer = derivatives_sigmoid(output)

slope_hidden_layer =

derivatives_sigmoid(hiddenlayer_activations)

Step 7: Compute change factor(delta) at output layer,

dependent on the gradient of error multiplied by the slope of

output layer activation

d_output = E * slope_output_layer

Step 8: At this step, the error will propagate back into the

network which means error at hidden layer. For this, we will

take the dot product of output layer delta with weight
parameters of edges between the hidden and output layer

(wout.T).

Error_at_hidden_layer = matrix_dot_product(d_output,

wout.Transpose)

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 128

Step 9: Compute change factor(delta) at hidden layer, multiply

the error at hidden layer with slope of hidden layer activation

d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer

Step 10: Update weights at the output and hidden layer: The
weights in the network can be updated from the errors

calculated for training example(s).

wout = wout +

matrix_dot_product(hiddenlayer_activations.Transpose,

d_output)*learning_rate

wh = wh +

matrix_dot_product(X.Transpose,d_hiddenlayer)*learning_rat

e-learning_rate: The amount that weights are updated is

controlled by a configuration parameter called the learning rate)

Step 11: Update biases at the output and hidden layer: The

biases in the network can be updated from the aggregated errors

at that neuron.

● bias at output_layer =bias at output_layer + sum of

delta of output_layer at row-wise * learning_rate

● bias at hidden_layer =bias at hidden_layer + sum of

delta of output_layer at row-wise * learning_rate

bh = bh + sum(d_hiddenlayer, axis=0) * learning_rate

bout = bout + sum(d_output, axis=0)*learning_rate

Steps from 5 to 11 are known as “Backward Propagation“

One forward and backward propagation iteration is considered

as one training cycle. As I mentioned earlier, When do we train

second time then update weights and biases are used for forward

propagation.

Above, we have updated the weight and biases for hidden and

output layer and we have used full batch gradient descent

algorithm.

VI.. RESULTS AND INFERENCES

 The dataset was constructed from a number of scanned

document dataset available from the National Institute of

Standards and Technology (NIST). This is where the name for

the dataset comes from, as the Modified NIST or MNIST

dataset. Images of digits and alphabets were taken from a

variety of scanned documents, normalized in size and centered.

This makes it an excellent dataset for evaluating models,

allowing the developer to focus on machine learning with very

little data cleaning or preparation required. Each image is a 28

by 28 pixel square (784 pixels total). A standard spit of the

dataset is used to evaluate and compare models, where 60,000

images are used to train a model and a separate set of 10,000

images are used to test it. It is a digit recognition task. [13] As

such there are 24 Alphabets (A - Z) and (a-z) and 10 digits (0

to 9) or 10 classes to predict. Results are reported using

prediction error, which is nothing more than the inverted

classification accuracy. Excellent results achieve a prediction

error of less than 1%. State-of-the-art prediction error of

approximately 0.2% can be achieved with large Convolutional

Neural Networks

 A. Evaluation Parameters

 The performance of the algorithms is measured as used in

multilayer perceptrons: backpropagation and resilient

propagation. We have considered the scenario of recognition

from image, where the dataset consists only of 40 character

image bitmaps per character. For this comparison, the datasets

are only comprised of characters of digits, therefore the size of

the dataset contains 400 examples. For relevant values, we have

split the dataset into training and validation sets, with the ratio

being 7:3.[14] Also, before using the learning algorithms, the

dataset has been randomly shuffled. The configuration of the

learning model whose results are presented here is:

• The regularization parameter is 0.

• The number of epochs is 100.

• In backpropagation, the learning rate is 0.3.

• In resilient backpropagation, η − , η + ,

and Δ0 are 0.5, 1.2, and 0.01,

respectively.
• The perceptron architectures are as described in the

plan of solution.

The measured error of the backpropagation and CNN algorithms on

the training and validation sets. This has been tested using fractions

of the dataset of various sizes and a learning curve has been plotted.

Learning curve represents error as a function of the dataset size and

is a perfect tool to visualize high bias or variance.

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 129

 Figure 3.1

 Figure 3.2

In the learning curves, no significant overfitting or underfitting
is apparent. We can see that the RPROP algorithm manages to

converge to a better minimum given 100 epochs than

backpropagation. This is caused by the advantages of the

RPROP algorithm to pure backpropagation that we explained

earlier in this work. Table 1 confirms these findings.

 Table 3.1.

B. Experimental Methodology

 As we have more data available in the touch mode than a

pure image bitmap, we have also decided to collect the bitmap

of stroke end points to be able to better distinguish characters

such as '8' and 'B', as mentioned in the overview. The resized

bitmaps of these characters are often similar, but the writing

style of each is usually different. By providing this extra bitmap

with each example, we are giving a hint to the neural network

classifier about what features to focus on when performing

automatic feature extraction with the hidden layer. The pipeline

for recognition based on an image or a camera frame is

different:

1. Acquire the image bitmap in gray-scale colors.

 2. Apply a median filter to the bitmap.
 3. Segment the bitmap using thresholding to get a binary

bitmap.

 4. Find the bounding boxes of external contours in the

bitmap.

 5. Extract sub-bitmaps from the bounding boxes.

6. Resize the sub-bitmaps to 20x20 pixels.

7. Unroll the sub-bitmap matrices to feature vectors per

400 elements.

8. Feed each feature vector to a trained multilayer

perceptron, giving us predictions.

O

C. Validation

 The proposed alphabet recognition system was trained to

recognize handwritten English alphabets. Since the alphabets

are divided into 25 segments, neural network architecture is

designed specially for the processing of 25 input bits. The

network parameters used for training are: Learning rate

coefficient = 0.05 No. of Units in Input layer = 25 No. of Hidden

Layers = 2 No. of Units in Hidden layer= 25 Initial Weights =

Random [0,1] Transfer Function Used for Hidden Layer 1 =

“Logsig” Transfer Function Used for Hidden Layer 2 =

“Tansig” The training set involves the binary codes of

alphabets.[15] It was not practical to input these shapes

individually when creating training sets, because the shape of a

particular segment of the actual character depends on

handwriting. Therefore, this was automated so that the entire

letter is input to the system, and then the shape of the segment

needed is extracted from this full letter instead of drawing the

shape of the segment itself. The figure below shows the results

for the training dataset (Figure 3.3 and 3.4) and the test

dataset(Figure 3.5).

 Figure 3.3

Figure 3.4

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 130

Figure 3.5

 The binary input of each alphabet of different handwriting

styles is then feed to all the units of input layer of the network

at once and the network after processing through hidden layers
and with the training algorithm, Gradient Descent Back

propagation, can be trained for these inputs. Now, the trained

network is capable to recognize the alphabet of different

handwriting. The results are tabulated below.

Table 3.2

We can observe from the table that recognition accuracy is

lower for the similar input patterns like: c & e; i, j, l & r; and u

& v. for these similar patterns in different handwriting, even

human eye can not be able easily distinguish, hence the machine

needs lots of training epochs to recognize them but with some

misclassifications.

VII. CONCLUSION AND FUTURE POSSIBILITIES

This work has mostly been focused on the machine learning

methods used in the project. At first, we reviewed the

approaches that are nowadays used in similar applications.

After that, we delved into the inner workings of a multilayer

perceptron, focusing on backpropagation and resilient back,

which has been implemented. Even though our dataset consists

of the images of every word separately, some words within

these images were slightly tilted. This was because the

participants of the dataset were asked to write on blank paper

with no lines, and some of the words were written in a more

tilted fashion. This occasion happens very frequently in real life

whether or not the page has lines, thus we decided to make our

training data more robust to this issue by rotating an image

towards the right by a very small angle with random probability

and adding that image to our training set. The technique we

have found to be useful during experimentation was keeping the

number of epochs low when trying out different

hyperparameters. This approach certainly saved us a lot of time

in training; however, it also had its own disadvantages. This

data augmentation technique helped us make our model more

robust to some minor yet so frequent details that might come up

in our test set. Before training the models with the dataset, we

have applied various preprocessing and data augmentation

techniques on our dataset in order to make our data more

compatible with the models and to make our dataset more

robust to real life situations. With the knowledge we had

described, we specified the requirements of the project and

planned the solution. Several improvements for the application

or the learning model used within can be suggested. For

example, the feature extraction performed by the neural

network could be constrained to operate on more strictly

preprocessed data. Also, several classifiers learning on different

features could be combined to make the system more robust.

 The proposed and developed a scheme for recognizing

handwritten English alphabets and numbers. It has been tested

on experiment over all English alphabets and numerical digits

with several Handwriting styles. Experimental results shown

that the machine has successfully recognized the alphabets and

numbers with the average accuracy of 82.5%, which significant

and may be acceptable in some applications. The machine

found less accurate to classify similar alphabets and in future

this misclassification of the similar patterns may improve and

further a similar experiment can be tested over a large data set

and with some other optimized networks parameters to improve

the accuracy of the machine.

Firstly, to have more compelling and robust training, we

could apply additional preprocessing techniques such as

jittering. We could also divide each pixel by its corresponding

standard deviation to normalize the data. Next, given time and

budget constraints, we were limited to 20 training examples for

each given word in order to efficiently evaluate and revise our

model. Another method of improving our character

segmentation model would be to move beyond a greedy search

for the most likely solution. We would approach this by

considering a more exhaustive but still efficient decoding

algorithm such as beam search. We can use a character/word-

http://www.asianssr.org/

Asian Journal of Convergence In Technology Volume V Issue III

ISSN No : 2350-1145 I.F-5.11

www.asianssr.org 131

based language-based model to add a penalty/benefit score to

each of the possible final beam search candidate paths, along

with their combined individual softmax probabilities,

representing the probability of the sequence of

characters/words. If the language model indicates perhaps the

most likely candidate word according to the softmax layer and

beam search is very unlikely given the context so far as opposed

to some other likely candidate words, then the model can

correct itself accordingly

REFERENCES

[1] H. Al-Yousefi and S. S. Udpa, "Recognition of handwritten

Arabic characters," in Proc. SPIE 32nd Ann. Int. Tech. Symp.

Opt. Optoelectric Applied Sci. Eng. (San Diego, CA), Aug.

1988.

 [2] K. Badi and M. Shimura, "Machine recognition of Arabic

cursive script" Trans. Inst. Electron. Commun. Eng., Vol. E65,

no. 2, pp. 107-114, Feb. 1982.

[3] M Altuwaijri , M.A Bayoumi , "Arabic Text Recognition

Using Neural Network" ISCAS 94. IEEE International

Symposium on Circuits and systems, Volume 6, 30 May-2 June
1994.

[4] C. Bahlmann, B. Haasdonk, H. Burkhardt., “Online

Handwriting Recognition with Support Vector Machine – A

Kernel Approach”, In proceeding of the 8th Int. Workshop in

Handwriting Recognition (IWHFR), pp 49- 54, 2002

[5] Homayoon S.M. Beigi, "An Overview of Handwriting

Recognition," Proceedings of the 1st Annual Conference on

Technological Advancements in Developing Countries,

Columbia University, New York, July 24-25, 1993, pp. 30- 46.

 [6] Nadal, C. Legault, R. Suen and C.Y, “Complementary

Algorithms for Recognition of totally Unconstrained

Handwritten Numerals,” in Proc. 10th Int. Conf. Pattern

Recognition, 1990, vol. 1, pp. 434-449.

[7] S. Impedovo, P. Wang, and H. Bunke, editors, “Automatic

Bankcheck Processing,” World Scientific, Singapore, 1997.

[8] CL Liu, K Nakashima, H Sako and H. Fujisawa,

“Benchmarking of state-of- the-art techniques,” Pattern
Recognition, vol. 36, no 10, pp. 2271– 2285, Oct. 2003.

[9] M. Shi, Y. Fujisawa, T. Wakabayashi and F. Kimura,

“Handwritten numeral recognition using gradient and curvature

of gray scale image,” Pattern Recognition, vol. 35, no. 10, pp.

2051–2059, Oct 2002.

[10] LN. Teow and KF. Loe, “Robust vision-based features and

classification schemes for off-line handwritten digit

recognition,” Pattern Recognition, vol. 35, no. 11, pp. 2355–

2364, Nov. 2002.

[11] K. Cheung, D. Yeung and RT. Chin, “A Bayesian

framework for deformable pattern recognition with application

to handwritten character recognition,” IEEE Trans

PatternAnalMach Intell, vol. 20, no. 12, pp. 382– 1388, Dec.

1998.

[12] I.J. Tsang, IR. Tsang and DV Dyck, “Handwritten character

recognition based on moment features derived from image

partition,” in Int. Conf. image processing 1998, vol. 2, pp 939–
942.

[13] H. Soltanzadeh and M. Rahmati, “Recognition of Persian

handwritten digits using image profiles of multiple

orientations,” Pattern Recognition Lett, vol. 25, no. 14, pp.

1569–1576, Oct.2004.

[14] FN. Said, RA. Yacoub and CY Suen, “Recognition of

English and Arabic numerals using a dynamic number of

hidden neurons” in Proc. 5th Int Conf. document analysis and

recognition, 1999, pp 237–240

[15] J. Sadri, CY. Suen, and TD. Bui, “Application of support

vector machines for recognition of handwritten Arabic/Persian

digits,” in Proc. 2th Iranian Conf. machine vision and image

processing, 2003, vol. 1,pp 300–307.

http://www.asianssr.org/

	Handwritten Character Recognition using Convolutional Neural Networks in Python with Keras
	I. Introduction
	II. Problem Identification And Approach
	III. Deep Learning
	(i) Supervised Learning Algorithm
	(ii) Unsupervised Learning Algorithm
	(iii) Reinforcement Learning Algorithm
	IV. Neural Network
	v. Model approach
	A. Back Propagation
	B. Loss Function
	C. Optimisers

	VI.. Results And Inferences
	vii. Conclusion And Future Possibilities

