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Abstract— In the field of Deep Learning for Computer Vision, 

scientists have made many enhancements that helped a lot in the 

development of millions of smart devices. On the other hand, 

scientists brought a revolutionary change in the field of image 

processing and one of the biggest challenges in it is to identify 

documents in both printed as well as hand-written formats. One of 

the most widely used techniques for the validity of these types of 

documents is ‘Character Recognition’. This project seeks to classify 

an individual handwritten word so that handwritten text can be 

translated to a digital form. It demonstrates the use of neural 

networks for developing  a  system  that  can  recognize  handwritten  

English alphabets. In this system, each English alphabet is 

represented by  binary  values  that are  used  as  input to  a  simple  

feature extraction  system, whose  output is  fed to  our neural  

network system. The CNN approach is used to accomplish this task: 

classifying words directly and character segmentation. For the 

former, Convolutional Neural Network (CNN) is used with various 

architectures to train a model that can accurately classify words. For 

the latter, Long Short Term Memory networks  are used with 

convolution to construct bounding boxes for each character. We then 

pass the segmented characters to a CNN for classification, and then 

reconstruct each word according to the results of classification and 

segmentation.  

 

Keywords : Computer Vision , CNN, Character Recognition, 

Classification,  Deep Learning, Neural Networks 

I. INTRODUCTION 

   Handwritten character recognition is a field of research in 

artificial intelligence, computer vision, and pattern recognition. 

A computer performing handwriting recognition is said to be 

able to acquire and detect characters in paper documents, 

pictures, touch-screen devices and other sources and convert 

them into machine-encoded form. Its application is found in 

optical character recognition and more advanced intelligent 

character recognition systems. Most of these systems nowadays 

implement machine learning mechanisms such as neural 

networks. Machine learning is a branch of artificial intelligence 

inspired by psychology and biology that deals with learning 

from a set of data and can be applied to solve wide spectrum of 

problems. A supervised machine learning model is given 

instances of data specific to a problem domain and an answer 

that solves the problem for each instance. When learning is 

complete, the model is able not only to provide answers to the 

data it has learned on, but also to yet unseen data with high 

precision. Neural networks are learning models used in machine 

learning. Their aim is to simulate the learning process that 

occurs in an animal or human neural system. Being one of the 

most powerful learning models, they are useful in automation 

of tasks where the decision of a human being takes too long, or 

is imprecise. A neural network can be very fast at delivering 

results and may detect connections between seen instances of 

data that humans cannot see. Having acquired the knowledge 

that is explained in this text, the neural network has been 

implemented on a low level without using libraries that already 

facilitate the process. By doing this, we evaluate the 

performance of neural networks in the given problem and 

provide source code for the network that can be used to solve 

many different classification problems. A small step towards 

this goal is explored in this work by training a neural network 

model to learn which parts of an image are interesting to human 

observers that search for a specific object.  This knowledge can 

then be used to speed up object search in computer vision. 

   Adopting  the  principle  of  convolution  to  neural  networks  

led  to  convolutional neural networks. The first driving force 

behind handwritten text classification was for digit 

classification for postal mail. Jacob Rabinowitz early postal 

readers incorporated scanning equipment and hardwired logic 

to recognize monospaced fonts [1]. Allum et. al improved this by 

making a sophisticated scanner which allowed for more 

variations in how the text was written as well as encoding the 

information onto a barcode that was printed directly on the letter 
[2].The first prominent piece of OCR software was invented by 

Ray Kurzweil in 1974 as the software allowed for recognition 

for any font [3]. This software used a more developed use of the 

matrix method (pattern matching). Essentially, this would 

compare bitmaps of the template character with the bitmaps of 

the read character and would compare them to determine which 

character it most closely matched with. The downside was this 

software was sensitive to variations in sizing and the 

distinctions between each individual's way of writing 

  

II.              PROBLEM IDENTIFICATION AND APPROACH 

      Despite the abundance of technological writing tools, many 

people still choose to take their notes traditionally: with pen and 

paper. However, there are drawbacks to handwriting text. It’s 

difficult to store and access physical documents in an efficient 

manner, search through them efficiently and to share 
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them with others. Thus, a lot of important knowledge gets lost 

or does not get reviewed because of the fact that documents 

never get transferred to digital format. We have thus decided to 

tackle this problem in our project because we believe the 

significantly greater ease of management of digital text 

compared to written text will help people more effectively 

access, search, share, and analyze their records, while still 

allowing them to use their preferred writing method. The aim 

of this project is to further explore the task of classifying 

handwritten text and to convert handwritten text into the digital 

format.  

       Handwritten text is a very general term, and we wanted to 
narrow down the scope of the project by specifying the meaning 

of handwritten text for our purposes. In this project, we took on 

the challenge of classifying the image of any handwritten word, 

which might be of the form of cursive or block writing. This 

project can be combined with algorithms that segment the word 

images in a given line image, which can in turn be combined 

with algorithms that segment the line images in a given image 

of a whole handwritten page. With these added layers, our 

project can take the form of a deliverable that would be used by 

an end user, and would be a fully functional model that would 

help the user solve the problem of converting handwritten 
documents into digital format, by prompting the user to take a 

picture of a page of notes. Note that even though there needs to 

be some added layers on top of our model to create a fully 

functional deliverable for an end user, I believe that the most 

interesting and challenging part of this problem is the 

classification part, which is why we decided to tackle that using 

the Convolutional Neural Networks. I approach this problem 

with complete handwritten alphabet images because CNN's 

tend to work better on raw input pixels rather than features or 

parts of an image [4]. Given our findings using handwritten 

alphabets, the program soughts improvement by extracting 

characters from the handwritten image and then classifying 
each character independently to reconstruct the digital letter. In 

summary, in both of our techniques, our models take in an 

image of an alphabet which is handwritten and output the 

alphabet digitally. 

      Two phase processes are involved in the overall processing 

of our proposed scheme: the Pre-processing and Neural 

network based Recognizing tasks. The pre-processing steps 

handle the manipulations necessary for the preparation of the 

characters for feeding as input to the neural network system. 

First, the required character or part of characters needs to be 

extracted from the pictorial representation. The splitting of 
alphabets into 25 segment grids, scaling the segments so split 

to a standard size and thinning the resultant character segments 

to obtain skeletal patterns. The following pre-processing steps 

may also be required to furnish the recognition process:  

A.. The alphabets can be thinned and their skeletons 

obtained using well-known image processing techniques, 

before extracting their binary forms. 

B. The scanned documents can be “cleaned” and 

“smoothed” with the help of image processing techniques for 

better performance. 

III.    DEEP LEARNING 

    Deep Learning  is an application of artificial intelligence 

(AI) that provides systems the ability to automatically learn and 

improve from experience without being explicitly programmed. 

Deep learning methods aim at learning feature hierarchies with 

features from higher levels of the hierarchy formed by the 

composition of lower level features. Automatically learning 

features at multiple levels of abstraction allow a system to learn 
complex functions mapping the input to the output directly from 

data, without depending completely on human-crafted 

features.Deep learning focuses on the development of computer 

programs that can access data and use it to learn for themselves. 

The process of learning begins with observations or data, such 

as examples, direct experience, or instruction, in order to look 

for patterns in data and make better decisions in the future based 

on the examples that we provide. The primary aim is to allow 

the computers to learn automatically without human 

intervention or assistance and adjust actions accordingly. The  

algorithms are often categorized as supervised or unsupervised. 

(i) Supervised Learning Algorithm 

     This algorithm can apply what has been learned in the past 

to new data using labeled examples to predict future events. 

Starting from the analysis of a known training dataset, the 

learning algorithm produces an inferred function to make 

predictions about the output values. The system is able to 

provide targets for any new input after sufficient training. The 

learning algorithm can also compare its output with the correct, 
intended output and find errors in order to modify the model 

accordingly. 

(ii) Unsupervised Learning Algorithm 

       In contrast, unsupervised machine learning algorithms are 

used when the information used to train is neither classified nor 

labeled. Unsupervised learning studies how systems can infer a 

function to describe a hidden structure from unlabeled data. The 

system doesn’t figure out the right output, but it explores the 
data and can draw inferences from datasets to describe hidden 

structures from unlabeled data.     
     Semi-supervised machine learning algorithms fall 

somewhere in between supervised and unsupervised learning, 

since they use both labeled and unlabeled data for training – 

typically a small amount of labeled data and a large amount of 
unlabeled data. The systems that use this method are able to 

considerably improve learning accuracy. Usually, semi-

supervised learning is chosen when the acquired labeled data 

requires skilled and relevant resources in order to train it or 

learn from it. Otherwise, acquiring unlabeled data generally 

doesn’t require additional resources. 

 
 

(iii) Reinforcement Learning Algorithm 

     It is a learning method that interacts with its environment by 

producing actions and discovers errors or rewards. Trial and 

error search and delayed reward are the most relevant 

characteristics of reinforcement learning. This method allows 

machines and software agents to automatically determine the 
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ideal behavior within a specific context in order to maximize its 

performance. Simple reward feedback is required for the agent 

to learn which action is best; this is known as the reinforcement 

signal. 

   Machine learning enables analysis of massive quantities of 

data. While it generally delivers faster, more accurate results in 

order to identify profitable opportunities or dangerous risks, it 

may also require additional time and resources to train it 

properly. Combining machine learning with AI and cognitive 

technologies can make it even more effective in processing 

large volumes of information. 

IV.  NEURAL NETWORK 

     The simplest definition of a neural network, more properly 

referred to as an 'artificial' neural network (ANN), is provided  

by the inventor of one of the first neurocomputers, Dr. Robert 

Hecht-Nielsen. He defines a neural network as"...a computing 

system made up of a number of simple, highly interconnected 

processing elements, which process information by their 

dynamic state response to external inputs. In "Neural Network 
Primer: Part I" by Maureen Caudill, AI Expert, Feb. 1989. 

ANNs are processing devices (algorithms or actual hardware) 

that are loosely modeled after the neuronal structure of the 

mammalian cerebral cortex but on much smaller scales. A large 

ANN might have hundreds or thousands of processor units, 

whereas a mammalian brain has billions of neurons with a 

corresponding increase in magnitude of their overall interaction 

and emergent behavior. Although ANN researchers are 

generally not concerned with whether their networks accurately 

resemble biological systems, some have. For example, 

researchers have accurately simulated the function of the retina 

and modeled the eye rather well. Although the mathematics 
involved with neural networking is not a trivial matter, a user 

can rather easily gain at least an operational understanding of 

their structure and function. Neural networks are typically 

organized in layers. Layers are made up of a number of 

interconnected 'nodes' which contain an 'activation function'. 

Patterns are presented to the network via the 'input layer', which 

communicates to one or more 'hidden layers' where the actual 

processing is done via a system of weighted 'connections'. 

       Most ANNs contain some form of 'learning rule' which 

modifies the weights of the connections according to the input 

patterns that it is presented with. In a sense, ANNs learn by 
example as do their biological counterparts; a child learns to 

recognize dogs from examples of dogs. Although there are 

many different kinds of learning rules used by neural networks, 

this demonstration is concerned only with one; the delta rule. 

The delta rule is often utilized by the most common class of 

ANNs called 'backpropagation neural networks' (BPNNs). 

Backpropagation is an abbreviation for the backwards 

propagation of error. With the delta rule, as with other types of 

backpropagation, 'learning' is a supervised process that occurs 

with each cycle or 'epoch' (i.e. each time the network is 

presented with a new input pattern) through a forward 

activation flow of outputs, and the backwards error propagation 
of weight adjustments. The process flow of a neural network is 

as per the figure below. 

 

 
                               Figure 4.a 

 

        Neural networks take a different approach to problem 

solving than that of conventional computers. Conventional 

computers use an algorithmic approach i.e. the computer 

follows a set of instructions in order to solve a problem. 

        Unless the specific steps that the computer needs to follow 

are known the computer cannot solve the problem. That 

restricts the problem solving capability of conventional 

computers to problems that we already understand and know 

how to solve. But computers would be so much more useful if 
they could do things that we don't exactly know how to do. 

Neural networks process information in a similar way the 

human brain does. The network is composed of a large number 

of highly interconnected processing elements(neurones) 

working in parallel to solve a specific problem. Neural 

networks learn by example. They cannot be programmed to 

perform a specific task. The examples must be selected 

carefully otherwise useful time is wasted or even worse the 

network might be functioning incorrectly. The disadvantage is 

that because the network finds out how to solve the problem by 

itself, its operation can be unpredictable. 
      Neural networks and conventional algorithmic computers 

are not in competition but complement each other. These tasks 

are more suited to an algorithmic approach like arithmetic 

operations and tasks that are more suited to neural networks. 

Even more, a large number of tasks require systems that use a 

combination of the two approaches (normally a conventional 

computer is used to supervise the neural network) in order to 

perform at maximum efficiency. So this project involves the 

Convolutional Neural Networks to analyse the problem and 

provide the appropriate solution. 

V.   MODEL APPROACH  

     A neural network is made up of neurons connected to each 

other; at the same time, each connection of our neural network 

is associated with a weight that dictates the importance of this 

relationship in the neuron when multiplied by the input value. 

Each neuron has an activation function that defines the output 

of the neuron. The activation function is used to introduce non-

linearity in the modeling capabilities of the network. We have 

several options for activation functions that we will present in 
this post. Training our neural network, that is, learning the 

values of our parameters (weights wij and bj biases) is the most 

genuine part of Deep Learning and we can see this learning 

process in a neural network as an iterative process of “going and 

returning” by the layers of neurons. The “going” is a forward 
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propagation of the information and the “return” is a 

backpropagation of the information. The figure below 

illustrates the process. 

                             Figure 5.a 

 

     The first phase forward propagation occurs when the 

network is exposed to the training data and these cross the entire 

neural network for their predictions (labels) to be calculated. 

That is, passing the input data through the network in such a 

way that all the neurons apply their transformation to the 

information they receive from the neurons of the previous layer 
and sending it to the neurons of the next layer. When the data 

has crossed all the layers, and all its neurons have made their 

calculations, the final layer will be reached with a result of label 

prediction for those input examples. The loss function is used 

to estimate the loss (or error) and to compare and measure how 

good/bad our prediction result was in relation to the correct 

result (remember that we are in a supervised learning 

environment and we have the label that tells us the expected 

value). Ideally, we want our cost to be zero, that is, without 

divergence between estimated and expected value. Therefore, 

as the model is being trained, the weights of the 

interconnections of the neurons will gradually be adjusted until 
good predictions are obtained. Once the loss has been 

calculated, this information is propagated backwards. Hence, its 

name: backpropagation. Starting from the output layer, that loss 

information propagates to all the neurons in the hidden layer 

that contribute directly to the output. However, the neurons of 

the hidden layer only receive a fraction of the total signal of the 

loss, based on the relative contribution that each neuron has 

contributed to the original output. This process is repeated, 

layer by layer, until all the neurons in the network have received 

a loss signal that describes their relative contribution to the total 

loss. Visually, It can be summarized with this visual scheme the 
stages: 

       The various stages are as follows: 

A. Back Propagation 

B. Loss Function 

C. Optimiser 

D. Model Parameterisation 

E. Epochs 

F. Batch Size 

G. Learning Rate 

H. Initialization of parameter weights 

I. Neural Network Methodology  

 

A. Back Propagation 

Backpropagation is a method to alter the parameters (weights 

and biases) of the neural network in the right direction. It starts 

by calculating the loss term first, and then the parameters of the 

neural network are adjusted in reverse order with an 

optimization algorithm taking into account this calculated 
loss.Three arguments are passed to the method: an optimizer, a 

loss function, and a list of metrics. In classification problems 

like our example, accuracy is used as a metric. Let’s go a little 

deeper into these arguments. 

     

B.  Loss Function  

       A loss function is one of the parameters required to 

quantify how close a particular neural network is to the ideal 

weight during the training process. The choice of the best 

function of loss resides in understanding what type of error is 

or is not acceptable for the problem in particular. 

C.      Optimisers 

        The optimizer is another of the arguments required in the 

compile() method. Keras currently has different optimizers that 

can be used: SGD, RMSprop, Adagrad, Adadelta, Adam, 

Adamax, Nadam.  In general, the learning process is seen as a 

global optimization problem where the parameters (weights and 

biases) must be adjusted in such a way that the loss function 

presented above is minimized. 
         
D.    Model Parameterization  

 

    It is also possible to increase the number of epochs, add more 

neurons in a layer or add more layers. However, in these cases, 

the gains in accuracy have the side effect of increasing the 
execution time of the learning process . We can check with the 

summary() method that the number of parameters increases (it 

is fully connected) and the execution time is significantly 

higher, even reducing the number of epochs. With this model, 

the accuracy reaches 94%. And if we increase to 20 epochs, a 

96% accuracy is achieved. 

 

E.   Epochs 

 

     As we have already done, epochs tells us the number of 

times all the training data have passed through the neural 
network in the training process. A good clue is to increase the 

number of epochs until the accuracy metric with the validation 

data starts to decrease, even when the accuracy of the training 

data continues to increase (this is when we detect a potential 

overfitting). 

 

  F.     Batch Size 

    As we have said before, we can partition the training data in 

mini batches to pass them through the network. In Keras, the 

batch_size is the argument that indicates the size of these 

batches that will be used in the fit() method in an iteration of 

the training to update the gradient. The optimal size will depend 
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on many factors, including the memory capacity of the 

computer that we use to do the calculations. 

 

G.     Learning Rate 

     The gradient vector has a direction and a magnitude. 

Gradient descent algorithms multiply the magnitude of the 

gradient by a scalar known as learning rate (also sometimes 

called step size) to determine the next point. 
   

H.     Initialisation of parameter weights 

 

    Initialization of the parameters’ weight is not exactly a 

hyperparameter, but it is as important as any of them and that is 

why we make a brief paragraph in this section. It is advisable to 

initialize the weights with small random values to break the 

symmetry between different neurons, if two neurons have 

exactly the same weights they will always have the same 

gradient; that supposes that both have the same values in the 

subsequent iterations, so they will not be able to learn different 
characteristics. Initializing the parameters randomly following 

a standard normal distribution is correct, but it can lead to 

possible problems of vanishing gradients (when the values of a 

gradient are too small and the model stops learning or takes too 

long due to that) or exploding gradients (when the algorithm 

assigns an exaggeratedly high importance to the weights). 

 

I.    Neural Network Methodology  

 

   This is the step by step building methodology of Neural 

Network (MLP with one hidden layer, similar to above-shown 

architecture). At the output layer, we have only one neuron as 
we are solving a binary classification problem (predict 0 or 1). 

We could also have two neurons for predicting each of both 

classes. 

First look at the broad steps: 

We take input and output 

● X as an input matrix 

● y as an output matrix 
Step 1 : We initialize weights and biases with random values 

(This is one time initiation. In the next iteration, we will use 

updated weights, and biases). Let us define: 

● wh as weight matrix to the hidden layer 

● bh as bias matrix to the hidden layer 

● wout as weight matrix to the output layer 

● bout as bias matrix to the output layer 

Step 2: We take matrix dot product of input and weights 
assigned to edges between the input and hidden layer then add 

biases of the hidden layer neurons to respective inputs, this is 

known as linear transformation: 

hidden_layer_input= matrix_dot_product(X,wh) + bh 

Step 3:Perform non-linear transformation using an activation 

function (Sigmoid). Sigmoid will return the output as 1/(1 + 

exp(-x)). 

hiddenlayer_activations = sigmoid(hidden_layer_input) 

Step 4: Perform a linear transformation on hidden layer 

activation (take matrix dot product with weights and add a bias 

of the output layer neuron) then apply an activation function 

(again used sigmoid, but you can use any other activation 

function depending upon your task) to predict the output 

output_layer_input = matrix_dot_product 

(hiddenlayer_activations * wout ) + bout 

output = sigmoid(output_layer_input) 

All above steps are known as “Forward Propagation“ 

Step 5: Compare prediction with actual output and calculate the 

gradient of error (Actual – Predicted). Error is the mean square 

loss = ((Y-t)^2)/2 

E = y – output 

Step 6: Compute the slope/ gradient of hidden and output layer 

neurons ( To compute the slope, we calculate the derivatives of 

non-linear activations x at each layer for each neuron). Gradient 

of sigmoid can be returned as x * (1 – x). 

slope_output_layer = derivatives_sigmoid(output) 

slope_hidden_layer = 

derivatives_sigmoid(hiddenlayer_activations) 

Step 7: Compute change factor(delta) at output layer, 

dependent on the gradient of error multiplied by the slope of 

output layer activation 

d_output = E * slope_output_layer 

Step 8: At this step, the error will propagate back into the 

network which means error at hidden layer. For this, we will 

take the dot product of output layer delta with weight 
parameters of edges between the hidden and output layer 

(wout.T). 

Error_at_hidden_layer = matrix_dot_product(d_output, 

wout.Transpose) 
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Step 9: Compute change factor(delta) at hidden layer, multiply 

the error at hidden layer with slope of hidden layer activation 

d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer 

Step 10: Update weights at the output and hidden layer: The 
weights in the network can be updated from the errors 

calculated for training example(s). 

wout = wout + 

matrix_dot_product(hiddenlayer_activations.Transpose, 

d_output)*learning_rate 

wh =  wh + 

matrix_dot_product(X.Transpose,d_hiddenlayer)*learning_rat

e-learning_rate: The amount that weights are updated is 

controlled by a configuration parameter called the learning rate) 

Step 11: Update biases at the output and hidden layer: The 

biases in the network can be updated from the aggregated errors 

at that neuron. 

● bias at output_layer =bias at output_layer + sum of 

delta of output_layer at row-wise * learning_rate 

● bias at hidden_layer =bias at hidden_layer + sum of 

delta of output_layer at row-wise * learning_rate    

bh = bh + sum(d_hiddenlayer, axis=0) * learning_rate 

bout = bout + sum(d_output, axis=0)*learning_rate 

Steps from 5 to 11 are known as “Backward Propagation“ 

One forward and backward propagation iteration is considered 

as one training cycle. As I mentioned earlier, When do we train 

second time then update weights and biases are used for forward 

propagation. 

Above, we have updated the weight and biases for hidden and 

output layer and we have used full batch gradient descent 

algorithm. 

 

VI..       RESULTS AND INFERENCES 

 The dataset was constructed from a number of scanned 

document dataset available from the National Institute of 

Standards and Technology (NIST). This is where the name for 

the dataset comes from, as the Modified NIST or MNIST 

dataset. Images of digits and alphabets were taken from a 

variety of scanned documents, normalized in size and centered. 

This makes it an excellent dataset for evaluating models, 

allowing the developer to focus on machine learning with very 

little data cleaning or preparation required. Each image is a 28 

by 28 pixel square (784 pixels total). A standard spit of the 

dataset is used to evaluate and compare models, where 60,000 

images are used to train a model and a separate set of 10,000 

images are used to test it. It is a digit recognition task. [13] As 

such there are 24 Alphabets (A - Z) and (a-z)  and 10 digits (0 

to 9) or 10 classes to predict. Results are reported using 

prediction error, which is nothing more than the inverted 

classification accuracy. Excellent results achieve a prediction 

error of less than 1%. State-of-the-art prediction error of 

approximately 0.2% can be achieved with large Convolutional 

Neural Networks 

 

  A.  Evaluation Parameters 

    The  performance of the algorithms is measured as used in 

multilayer perceptrons: backpropagation and resilient 

propagation. We have considered the scenario of recognition 

from image, where the dataset consists only of 40 character 

image bitmaps per character. For this comparison, the datasets 

are only comprised of characters of digits, therefore the size of 

the dataset contains 400 examples. For relevant values, we have 

split the dataset into training and validation sets, with the ratio 

being 7:3.[14] Also, before using the learning algorithms, the 

dataset has been randomly shuffled. The configuration of the 

learning model whose results are presented here is:  

• The regularization parameter is 0.  

• The number of epochs is 100.  

• In backpropagation, the learning rate is 0.3.  

• In resilient backpropagation, η − , η + , 

and Δ0 are 0.5, 1.2, and 0.01, 

respectively.  
• The perceptron architectures are as described in the 

plan of solution. 

The measured error of the backpropagation and CNN algorithms on 

the training and validation sets. This has been tested using fractions 

of the dataset of various sizes and a learning curve has been plotted. 

Learning curve represents error as a function of the dataset size and 

is a perfect tool to visualize high bias or variance. 
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    Figure 3.1 

 

 
   Figure 3.2 

In the learning curves, no significant overfitting or underfitting 
is apparent. We can see that the RPROP algorithm manages to 

converge to a better minimum given 100 epochs than 

backpropagation. This is caused by the advantages of the 

RPROP algorithm to pure backpropagation that we explained 

earlier in this work. Table 1 confirms these findings. 

 
   Table 3.1. 

 

B.  Experimental Methodology 

    As we have more data available in the touch mode than a 

pure image bitmap, we have also decided to collect the bitmap 

of stroke end points to be able to better distinguish characters 

such as '8' and 'B', as mentioned in the overview. The resized 

bitmaps of these characters are often similar, but the writing 

style of each is usually different. By providing this extra bitmap 

with each example, we are giving a hint to the neural network 

classifier about what features to focus on when performing 

automatic feature extraction with the hidden layer. The pipeline 

for recognition based on an image or a camera frame is 

different:  

1. Acquire the image bitmap in gray-scale colors. 

 2. Apply a median filter to the bitmap. 
 3. Segment the bitmap using thresholding to get a binary 

bitmap. 

 4. Find the bounding boxes of external contours in the 

bitmap. 

 5. Extract sub-bitmaps from the bounding boxes.  

6. Resize the sub-bitmaps to 20x20 pixels.  

7. Unroll the sub-bitmap matrices to feature vectors per 

400 elements.  

8. Feed each feature vector to a trained multilayer 

perceptron, giving us predictions.  

O 

C.    Validation 

  

   The proposed alphabet recognition system was trained to 

recognize handwritten English alphabets. Since the alphabets 

are divided into 25 segments, neural network architecture is 

designed specially for the processing of 25 input bits. The 

network parameters used for training are: Learning rate 

coefficient = 0.05 No. of Units in Input layer = 25 No. of Hidden 

Layers = 2 No. of Units in Hidden layer= 25 Initial Weights = 

Random [0,1] Transfer Function Used for Hidden Layer 1 = 

“Logsig” Transfer Function Used for Hidden Layer 2 = 

“Tansig” The training set involves the binary codes of 

alphabets.[15] It was not practical to input these shapes 

individually when creating training sets, because the shape of a 

particular segment of the actual character depends on 

handwriting. Therefore, this was automated so that the entire 

letter is input to the system, and then the shape of the segment 

needed is extracted from this full letter instead of drawing the 

shape of the segment itself. The figure below shows the results 

for the training dataset (Figure 3.3 and 3.4)  and the test 

dataset(Figure 3.5). 

 
 Figure 3.3 

     
Figure 3.4 
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Figure 3.5 

    The binary input of each alphabet of different handwriting 

styles is then feed to all the units of input layer of the network 

at once and the network after processing through hidden layers 
and with the training algorithm, Gradient Descent Back 

propagation, can be trained for these inputs. Now, the trained 

network is capable to recognize the alphabet of different 

handwriting. The results are tabulated below. 

 
Table 3.2 

We can observe from the table that recognition accuracy is 

lower for the similar input patterns like: c & e; i, j, l & r; and u 

& v. for these similar patterns in different handwriting, even 

human eye can not be able easily distinguish, hence the machine 

needs lots of training epochs to recognize them but with some 

misclassifications. 

VII.     CONCLUSION AND FUTURE POSSIBILITIES 

This work has mostly been focused on the machine learning 

methods used in the project. At first, we reviewed the 

approaches that are nowadays used in similar applications. 

After that, we delved into the inner workings of a multilayer 

perceptron, focusing on backpropagation and resilient back, 

which has been implemented. Even though our dataset consists 

of the images of every word separately, some words within 

these images were slightly tilted. This was because the 

participants of the dataset were asked to write on blank paper 

with no lines, and some of the words were written in a more 

tilted fashion. This occasion happens very frequently in real life 

whether or not the page has lines, thus we decided to make our 

training data more robust to this issue by rotating an image 

towards the right by a very small angle with random probability 

and adding that image to our training set. The technique we 

have found to be useful during experimentation was keeping the 

number of epochs low when trying out different 

hyperparameters. This approach certainly saved us a lot of time 

in training; however, it also had its own disadvantages. This 

data augmentation technique helped us make our model more 

robust to some minor yet so frequent details that might come up 

in our test set. Before training the models with the dataset, we 

have applied various preprocessing and data augmentation 

techniques on our dataset in order to make our data more 

compatible with the models and to make our dataset more 

robust to real life situations. With the knowledge we had 

described, we specified the requirements of the project and 

planned the solution. Several improvements for the application 

or the learning model used within can be suggested. For 

example, the feature extraction performed by the neural 

network could be constrained to operate on more strictly 

preprocessed data. Also, several classifiers learning on different 

features could be combined to make the system more robust. 

 The proposed and developed a scheme for recognizing 

handwritten English alphabets and numbers. It has been tested 

on experiment over all English alphabets and numerical digits 

with several Handwriting styles. Experimental results shown 

that the machine has successfully recognized the alphabets and 

numbers with the average accuracy of 82.5%, which significant 

and may be acceptable in some applications. The machine 

found less accurate to classify similar alphabets and in future 

this misclassification of the similar patterns may improve and 

further a similar experiment can be tested over a large data set 

and with some other optimized networks parameters to improve 

the accuracy of the machine. 

Firstly, to have more compelling and robust training, we 

could apply additional preprocessing techniques such as 

jittering. We could also divide each pixel by its corresponding 

standard deviation to normalize the data. Next, given time and 

budget constraints, we were limited to 20 training examples for 

each given word in order to efficiently evaluate and revise our 

model. Another method of improving our character 

segmentation model would be to move beyond a greedy search 

for the most likely solution. We would approach this by 

considering a more exhaustive but still efficient decoding 

algorithm such as beam search. We can use a character/word-
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based language-based model to add a penalty/benefit score to 

each of the possible final beam search candidate paths, along 

with their combined individual softmax probabilities, 

representing the probability of the sequence of 

characters/words. If the language model indicates perhaps the 

most likely candidate word according to the softmax layer and 

beam search is very unlikely given the context so far as opposed 

to some other likely candidate words, then the model can 

correct itself accordingly 
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