Asian Journal of Convergence In Technology
ISSN No : 2350-1145 I.F-5.11

Volume V Issue 111

Handwritten Character Recognition using Convolutional
Neural Networks in Python with Keras

Hanu Priya Indiran, Student Member - IEEE, Bachelors in Electronics and Communication Engineering
Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
hanupriya28@gmail.com

Abstract— In the field of Deep Learning for Computer Vision,
scientists have made many enhancements that helped a lot in the
development of millions of smart devices. On the other hand,
scientists brought a revolutionary change in the field of image
processing and one of the biggest challenges in it is to identify
documents in both printed as well as hand-written formats. One of
the most widely used techniques for the validity of these types of
documents is ‘Character Recognition’. This project seeks to classify
an individual handwritten word so that handwritten text can be
translated to a digital form. It demonstrates the use of neural
networks for developing a system that can recognize handwritten
English alphabets. In this system, each English alphabet is
represented by binary values that are used as inputto a simple
feature extraction system, whose output is fed to our neural
network system. The CNN approach is used to accomplish this task:
classifying words directly and character segmentation. For the
former, Convolutional Neural Network (CNN) is used with various
architectures to train a model that can accurately classify words. For
the latter, Long Short Term Memory networks are used with
convolution to construct bounding boxes for each character. We then
pass the segmented characters to a CNN for classification, and then
reconstruct each word according to the results of classification and
segmentation.

Keywords : Computer Vision , CNN, Character Recognition,
Classification, Deep Learning, Neural Networks

|. INTRODUCTION

Handwritten character recognition is a field of research in
artificial intelligence, computer vision, and pattern recognition.
A computer performing handwriting recognition is said to be
able to acquire and detect characters in paper documents,
pictures, touch-screen devices and other sources and convert
them into machine-encoded form. Its application is found in
optical character recognition and more advanced intelligent
character recognition systems. Most of these systems nowadays
implement machine learning mechanisms such as neural
networks. Machine learning is a branch of artificial intelligence
inspired by psychology and biology that deals with learning
from a set of data and can be applied to solve wide spectrum of
problems. A supervised machine learning model is given
instances of data specific to a problem domain and an answer
that solves the problem for each instance. When learning is
complete, the model is able not only to provide answers to the
data it has learned on, but also to yet unseen data with high
precision. Neural networks are learning models used in machine
learning. Their aim is to simulate the learning process that
occurs in an animal or human neural system. Being one of the
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most powerful learning models, they are useful in automation
of tasks where the decision of a human being takes too long, or
is imprecise. A neural network can be very fast at delivering
results and may detect connections between seen instances of
data that humans cannot see. Having acquired the knowledge
that is explained in this text, the neural network has been
implemented on a low level without using libraries that already
facilitate the process. By doing this, we evaluate the
performance of neural networks in the given problem and
provide source code for the network that can be used to solve
many different classification problems. A small step towards
this goal is explored in this work by training a neural network
model to learn which parts of an image are interesting to human
observers that search for a specific object. This knowledge can
then be used to speed up object search in computer vision.
Adopting the principle of convolution to neural networks
led to convolutional neural networks. The first driving force
behind handwritten text classification was for digit
classification for postal mail. Jacob Rabinowitz early postal
readers incorporated scanning equipment and hardwired logic
to recognize monospaced fonts M. Allum et. al improved this by
making a sophisticated scanner which allowed for more
variations in how the text was written as well as encoding the
information onto a barcode that was printed directly on the letter
21 The first prominent piece of OCR software was invented by
Ray Kurzweil in 1974 as the software allowed for recognition
for any font %1, This software used a more developed use of the
matrix method (pattern matching). Essentially, this would
compare bitmaps of the template character with the bitmaps of
the read character and would compare them to determine which
character it most closely matched with. The downside was this
software was sensitive to variations in sizing and the
distinctions between each individual's way of writing

Il. PROBLEM IDENTIFICATION AND APPROACH

Despite the abundance of technological writing tools, many
people still choose to take their notes traditionally: with pen and
paper. However, there are drawbacks to handwriting text. It’s
difficult to store and access physical documents in an efficient
manner, search through them efficiently and to share
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them with others. Thus, a lot of important knowledge gets lost
or does not get reviewed because of the fact that documents
never get transferred to digital format. We have thus decided to
tackle this problem in our project because we believe the
significantly greater ease of management of digital text
compared to written text will help people more effectively
access, search, share, and analyze their records, while still
allowing them to use their preferred writing method. The aim
of this project is to further explore the task of classifying
handwritten text and to convert handwritten text into the digital
format.

Handwritten text is a very general term, and we wanted to
narrow down the scope of the project by specifying the meaning
of handwritten text for our purposes. In this project, we took on
the challenge of classifying the image of any handwritten word,
which might be of the form of cursive or block writing. This
project can be combined with algorithms that segment the word
images in a given line image, which can in turn be combined
with algorithms that segment the line images in a given image
of a whole handwritten page. With these added layers, our
project can take the form of a deliverable that would be used by
an end user, and would be a fully functional model that would
help the user solve the problem of converting handwritten
documents into digital format, by prompting the user to take a
picture of a page of notes. Note that even though there needs to
be some added layers on top of our model to create a fully
functional deliverable for an end user, | believe that the most
interesting and challenging part of this problem is the
classification part, which is why we decided to tackle that using
the Convolutional Neural Networks. | approach this problem
with complete handwritten alphabet images because CNN's
tend to work better on raw input pixels rather than features or
parts of an image “ Given our findings using handwritten
alphabets, the program soughts improvement by extracting
characters from the handwritten image and then classifying
each character independently to reconstruct the digital letter. In
summary, in both of our techniques, our models take in an
image of an alphabet which is handwritten and output the
alphabet digitally.

Two phase processes are involved in the overall processing
of our proposed scheme: the Pre-processing and Neural
network based Recognizing tasks. The pre-processing steps
handle the manipulations necessary for the preparation of the
characters for feeding as input to the neural network system.
First, the required character or part of characters needs to be
extracted from the pictorial representation. The splitting of
alphabets into 25 segment grids, scaling the segments so split
to a standard size and thinning the resultant character segments
to obtain skeletal patterns. The following pre-processing steps
may also be required to furnish the recognition process:

A.. The alphabets can be thinned and their skeletons
obtained using well-known image processing techniques,
before extracting their binary forms.

B. The scanned documents can be ‘“cleaned” and
“smoothed” with the help of image processing techniques for
better performance.
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I1l. DEEP LEARNING

Deep Learning is an application of artificial intelligence
(Al that provides systems the ability to automatically learn and
improve from experience without being explicitly programmed.
Deep learning methods aim at learning feature hierarchies with
features from higher levels of the hierarchy formed by the
composition of lower level features. Automatically learning
features at multiple levels of abstraction allow a system to learn
complex functions mapping the input to the output directly from
data, without depending completely on human-crafted
features.Deep learning focuses on the development of computer
programs that can access data and use it to learn for themselves.
The process of learning begins with observations or data, such
as examples, direct experience, or instruction, in order to look
for patterns in data and make better decisions in the future based
on the examples that we provide. The primary aim is to allow
the computers to learn automatically without human
intervention or assistance and adjust actions accordingly. The
algorithms are often categorized as supervised or unsupervised.

(i) Supervised Learning Algorithm

This algorithm can apply what has been learned in the past
to new data using labeled examples to predict future events.
Starting from the analysis of a known training dataset, the
learning algorithm produces an inferred function to make
predictions about the output values. The system is able to
provide targets for any new input after sufficient training. The
learning algorithm can also compare its output with the correct,
intended output and find errors in order to modify the model
accordingly.

(ii) Unsupervised Learning Algorithm

In contrast, unsupervised machine learning algorithms are
used when the information used to train is neither classified nor
labeled. Unsupervised learning studies how systems can infer a
function to describe a hidden structure from unlabeled data. The
system doesn’t figure out the right output, but it explores the
data and can draw inferences from datasets to describe hidden
structures from unlabeled data.

Semi-supervised machine learning algorithms fall
somewhere in between supervised and unsupervised learning,
since they use bhoth labeled and unlabeled data for training —
typically a small amount of labeled data and a large amount of
unlabeled data. The systems that use this method are able to
considerably improve learning accuracy. Usually, semi-
supervised learning is chosen when the acquired labeled data
requires skilled and relevant resources in order to train it or
learn from it. Otherwise, acquiring unlabeled data generally
doesn’t require additional resources.

(iii) Reinforcement Learning Algorithm

Itis a learning method that interacts with its environment by
producing actions and discovers errors or rewards. Trial and
error search and delayed reward are the most relevant
characteristics of reinforcement learning. This method allows
machines and software agents to automatically determine the
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ideal behavior within a specific context in order to maximize its
performance. Simple reward feedback is required for the agent
to learn which action is best; this is known as the reinforcement
signal.

Machine learning enables analysis of massive quantities of
data. While it generally delivers faster, more accurate results in
order to identify profitable opportunities or dangerous risks, it
may also require additional time and resources to train it
properly. Combining machine learning with Al and cognitive
technologies can make it even more effective in processing
large volumes of information.

IV. NEURAL NETWORK

The simplest definition of a neural network, more properly
referred to as an ‘artificial' neural network (ANN), is provided
by the inventor of one of the first neurocomputers, Dr. Robert
Hecht-Nielsen. He defines a neural network as"...a computing
system made up of a number of simple, highly interconnected
processing elements, which process information by their
dynamic state response to external inputs. In "Neural Network
Primer: Part 1" by Maureen Caudill, Al Expert, Feb. 1989.
ANNSs are processing devices (algorithms or actual hardware)
that are loosely modeled after the neuronal structure of the
mammalian cerebral cortex but on much smaller scales. A large
ANN might have hundreds or thousands of processor units,
whereas a mammalian brain has billions of neurons with a
corresponding increase in magnitude of their overall interaction
and emergent behavior. Although ANN researchers are
generally not concerned with whether their networks accurately
resemble biological systems, some have. For example,
researchers have accurately simulated the function of the retina
and modeled the eye rather well. Although the mathematics
involved with neural networking is not a trivial matter, a user
can rather easily gain at least an operational understanding of
their structure and function. Neural networks are typically
organized in layers. Layers are made up of a number of
interconnected 'nodes' which contain an ‘activation function'.
Patterns are presented to the network via the 'input layer', which
communicates to one or more 'hidden layers' where the actual
processing is done via a system of weighted 'connections'.

Most ANNSs contain some form of 'learning rule' which
modifies the weights of the connections according to the input
patterns that it is presented with. In a sense, ANNSs learn by
example as do their biological counterparts; a child learns to
recognize dogs from examples of dogs. Although there are
many different kinds of learning rules used by neural networks,
this demonstration is concerned only with one; the delta rule.
The delta rule is often utilized by the most common class of
ANNSs called 'backpropagation neural networks' (BPNNS).
Backpropagation is an abbreviation for the backwards
propagation of error. With the delta rule, as with other types of
backpropagation, 'learning' is a supervised process that occurs
with each cycle or 'epoch' (i.e. each time the network is
presented with a new input pattern) through a forward
activation flow of outputs, and the backwards error propagation
of weight adjustments. The process flow of a neural network is

as per the figure below.
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Figure 4.a

Neural networks take a different approach to problem
solving than that of conventional computers. Conventional
computers use an algorithmic approach i.e. the computer
follows a set of instructions in order to solve a problem.

Unless the specific steps that the computer needs to follow
are known the computer cannot solve the problem. That
restricts the problem solving capability of conventional
computers to problems that we already understand and know
how to solve. But computers would be so much more useful if
they could do things that we don't exactly know how to do.
Neural networks process information in a similar way the
human brain does. The network is composed of a large number
of highly interconnected processing elements(neurones)
working in parallel to solve a specific problem. Neural
networks learn by example. They cannot be programmed to
perform a specific task. The examples must be selected
carefully otherwise useful time is wasted or even worse the
network might be functioning incorrectly. The disadvantage is
that because the network finds out how to solve the problem by
itself, its operation can be unpredictable.

Neural networks and conventional algorithmic computers
are not in competition but complement each other. These tasks
are more suited to an algorithmic approach like arithmetic
operations and tasks that are more suited to neural networks.
Even more, a large number of tasks require systems that use a
combination of the two approaches (normally a conventional
computer is used to supervise the neural network) in order to
perform at maximum efficiency. So this project involves the
Convolutional Neural Networks to analyse the problem and
provide the appropriate solution.

V. MODEL APPROACH

A neural network is made up of neurons connected to each
other; at the same time, each connection of our neural network
is associated with a weight that dictates the importance of this
relationship in the neuron when multiplied by the input value.
Each neuron has an activation function that defines the output
of the neuron. The activation function is used to introduce non-
linearity in the modeling capabilities of the network. We have
several options for activation functions that we will present in
this post. Training our neural network, that is, learning the
values of our parameters (weights wij and bj biases) is the most
genuine part of Deep Learning and we can see this learning
process in a neural network as an iterative process of “going and
returning” by the layers of neurons. The “going” is a forward
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propagation of the information and the “return” is a
backpropagation of the information. The figure below
illustrates the process.

FORWARD PROPAGATION

LOSS

BARCKWARD PROPAGATION

Figure 5.a

The first phase forward propagation occurs when the
network is exposed to the training data and these cross the entire
neural network for their predictions (labels) to be calculated.
That is, passing the input data through the network in such a
way that all the neurons apply their transformation to the
information they receive from the neurons of the previous layer
and sending it to the neurons of the next layer. When the data
has crossed all the layers, and all its neurons have made their
calculations, the final layer will be reached with a result of label
prediction for those input examples. The loss function is used
to estimate the loss (or error) and to compare and measure how
good/bad our prediction result was in relation to the correct
result (remember that we are in a supervised learning
environment and we have the label that tells us the expected
value). Ideally, we want our cost to be zero, that is, without
divergence between estimated and expected value. Therefore,
as the model is being trained, the weights of the
interconnections of the neurons will gradually be adjusted until
good predictions are obtained. Once the loss has been
calculated, this information is propagated backwards. Hence, its
name: backpropagation. Starting from the output layer, that loss
information propagates to all the neurons in the hidden layer
that contribute directly to the output. However, the neurons of
the hidden layer only receive a fraction of the total signal of the
loss, based on the relative contribution that each neuron has
contributed to the original output. This process is repeated,
layer by layer, until all the neurons in the network have received
a loss signal that describes their relative contribution to the total
loss. Visually, It can be summarized with this visual scheme the
stages:

The various stages are as follows:

Learning Rate
Initialization of parameter weights
Neural Network Methodology

A. Back Propagation

B. Loss Function

C. Optimiser

D. Model Parameterisation
E. Epochs

F. Batch Size

G.

H.

l.
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A Back Propagation

Backpropagation is a method to alter the parameters (weights
and biases) of the neural network in the right direction. It starts
by calculating the loss term first, and then the parameters of the
neural network are adjusted in reverse order with an
optimization algorithm taking into account this calculated
loss. Three arguments are passed to the method: an optimizer, a
loss function, and a list of metrics. In classification problems
like our example, accuracy is used as a metric. Let’s go a little
deeper into these arguments.

B. Loss Function

A loss function is one of the parameters required to
quantify how close a particular neural network is to the ideal
weight during the training process. The choice of the best
function of loss resides in understanding what type of error is
or is not acceptable for the problem in particular.

C.  Optimisers

The optimizer is another of the arguments required in the
compile() method. Keras currently has different optimizers that
can be used: SGD, RMSprop, Adagrad, Adadelta, Adam,
Adamax, Nadam. In general, the learning process is seen as a
global optimization problem where the parameters (weights and
biases) must be adjusted in such a way that the loss function
presented above is minimized.

D. Model Parameterization

It is also possible to increase the number of epochs, add more
neurons in a layer or add more layers. However, in these cases,
the gains in accuracy have the side effect of increasing the
execution time of the learning process . We can check with the
summary() method that the number of parameters increases (it
is fully connected) and the execution time is significantly
higher, even reducing the number of epochs. With this model,
the accuracy reaches 94%. And if we increase to 20 epochs, a
96% accuracy is achieved.

E. Epochs

As we have already done, epochs tells us the number of
times all the training data have passed through the neural
network in the training process. A good clue is to increase the
number of epochs until the accuracy metric with the validation
data starts to decrease, even when the accuracy of the training
data continues to increase (this is when we detect a potential
overfitting).

F. Batch Size
As we have said before, we can partition the training data in
mini batches to pass them through the network. In Keras, the
batch_size is the argument that indicates the size of these
batches that will be used in the fit() method in an iteration of
the training to update the gradient. The optimal size will depend
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on many factors, including the memory capacity of the
computer that we use to do the calculations.

G. Learning Rate

The gradient vector has a direction and a magnitude.
Gradient descent algorithms multiply the magnitude of the
gradient by a scalar known as learning rate (also sometimes
called step size) to determine the next point.

H. Initialisation of parameter weights

Initialization of the parameters’ weight is not exactly a
hyperparameter, but it is as important as any of them and that is
why we make a brief paragraph in this section. It is advisable to
initialize the weights with small random values to break the
symmetry between different neurons, if two neurons have
exactly the same weights they will always have the same
gradient; that supposes that both have the same values in the
subsequent iterations, so they will not be able to learn different
characteristics. Initializing the parameters randomly following
a standard normal distribution is correct, but it can lead to
possible problems of vanishing gradients (when the values of a
gradient are too small and the model stops learning or takes too
long due to that) or exploding gradients (when the algorithm
assigns an exaggeratedly high importance to the weights).

I. Neural Network Methodology

This is the step by step building methodology of Neural
Network (MLP with one hidden layer, similar to above-shown
architecture). At the output layer, we have only one neuron as
we are solving a binary classification problem (predict 0 or 1).
We could also have two neurons for predicting each of both
classes.

First look at the broad steps:
We take input and output

e X asan input matrix

® yasan output matrix
Step 1 : We initialize weights and biases with random values
(This is one time initiation. In the next iteration, we will use
updated weights, and biases). Let us define:

wh as weight matrix to the hidden layer
bh as bias matrix to the hidden layer
wout as weight matrix to the output layer
bout as bias matrix to the output layer

Step 2: We take matrix dot product of input and weights
assigned to edges between the input and hidden layer then add
biases of the hidden layer neurons to respective inputs, this is
known as linear transformation:

hidden_layer_input= matrix_dot_product(X,wh) + bh
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Step 3:Perform non-linear transformation using an activation
function (Sigmoid). Sigmoid will return the output as 1/(1 +

exp(-x)).
hiddenlayer_activations = sigmoid(hidden_layer_input)

Step 4: Perform a linear transformation on hidden layer
activation (take matrix dot product with weights and add a bias
of the output layer neuron) then apply an activation function
(again used sigmoid, but you can use any other activation
function depending upon your task) to predict the output

output_layer_input =
(hiddenlayer_activations * wout ) + bout

matrix_dot_product

output = sigmoid(output_layer input)
All above steps are known as “Forward Propagation®

Step 5: Compare prediction with actual output and calculate the
gradient of error (Actual — Predicted). Error is the mean square
loss = ((Y-t)"2)/2

E =y - output

Step 6: Compute the slope/ gradient of hidden and output layer
neurons ( To compute the slope, we calculate the derivatives of
non-linear activations x at each layer for each neuron). Gradient
of sigmoid can be returned as X * (1 — x).

slope_output_layer = derivatives_sigmoid(output)

slope_hidden_layer =
derivatives_sigmoid(hiddenlayer_activations)

Step 7: Compute change factor(delta) at output layer,
dependent on the gradient of error multiplied by the slope of
output layer activation

d_output = E * slope_output_layer

Step 8: At this step, the error will propagate back into the
network which means error at hidden layer. For this, we will
take the dot product of output layer delta with weight
parameters of edges between the hidden and output layer
(wout.T).

Error_at_hidden_layer =
wout. Transpose)

matrix_dot_product(d_output,
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Step 9: Compute change factor(delta) at hidden layer, multiply
the error at hidden layer with slope of hidden layer activation

d_hiddenlayer = Error_at_hidden_layer * slope_hidden_layer

Step 10: Update weights at the output and hidden layer: The
weights in the network can be updated from the errors
calculated for training example(s).

wout = wout +
matrix_dot_product(hiddenlayer_activations.Transpose,
d_output)*learning_rate

wh = wh +
matrix_dot_product(X.Transpose,d_hiddenlayer)*learning_rat
e-learning_rate: The amount that weights are updated is
controlled by a configuration parameter called the learning rate)

Step 11: Update biases at the output and hidden layer: The
biases in the network can be updated from the aggregated errors
at that neuron.

e bias at output_layer =bias at output_layer + sum of
delta of output_layer at row-wise * learning_rate

e bias at hidden_layer =bias at hidden_layer + sum of
delta of output_layer at row-wise * learning_rate

bh = bh + sum(d_hiddenlayer, axis=0) * learning_rate
bout = bout + sum(d_output, axis=0)*learning_rate
Steps from 5 to 11 are known as “Backward Propagation®

One forward and backward propagation iteration is considered
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This makes it an excellent dataset for evaluating models,
allowing the developer to focus on machine learning with very
little data cleaning or preparation required. Each image is a 28
by 28 pixel square (784 pixels total). A standard spit of the
dataset is used to evaluate and compare models, where 60,000
images are used to train a model and a separate set of 10,000
images are used to test it. It is a digit recognition task. 31 As
such there are 24 Alphabets (A - Z) and (a-z) and 10 digits (0
to 9) or 10 classes to predict. Results are reported using
prediction error, which is nothing more than the inverted
classification accuracy. Excellent results achieve a prediction
error of less than 1%. State-of-the-art prediction error of
approximately 0.2% can be achieved with large Convolutional
Neural Networks

A. Evaluation Parameters
The performance of the algorithms is measured as used in

multilayer  perceptrons:  backpropagation and resilient
propagation. We have considered the scenario of recognition
from image, where the dataset consists only of 40 character
image bitmaps per character. For this comparison, the datasets
are only comprised of characters of digits, therefore the size of
the dataset contains 400 examples. For relevant values, we have
split the dataset into training and validation sets, with the ratio
being 7:3.[14] Also, before using the learning algorithms, the
dataset has been randomly shuffled. The configuration of the
learning model whose results are presented here is:

* The regularization parameter is 0.

* The number of epochs is 100.

* In backpropagation, the learning rate is 0.3.

* In resilient backpropagation, n - , n + ,
and A0 0.5, 1.2, and 0.01,

respectively.

* The perceptron architectures are as described in the
plan of solution.

are

as one training cycle. As | mentioned earlier, When do we train The measured error of the backpropagation and CNN algorithms on
second time then update We|ghts and biases are used for forwardthe training and validation sets. This has been tested USing fractions

propagation.

of the dataset of various sizes and a learning curve has been plotted.

Learning curve represents error as a function of the dataset size and

Above, we have updated the weight and biases for hidden and
output layer and we have used full batch gradient descent
algorithm.

VI.. RESULTS AND INFERENCES

The dataset was constructed from a number of scanned
document dataset available from the National Institute of
Standards and Technology (NIST). This is where the name for
the dataset comes from, as the Modified NIST or MNIST
dataset. Images of digits and alphabets were taken from a
variety of scanned documents, normalized in size and centered.
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In the learning curves, no significant overfitting or underfitting
is apparent. We can see that the RPROP algorithm manages to
converge to a better minimum given 100 epochs than
backpropagation. This is caused by the advantages of the
RPROP algorithm to pure backpropagation that we explained
earlier in this work. Table 1 confirms these findings.

Name Classes  No. Training  No. Testing  Validation Total

By_Class 62 697,932 116,323 No 814,255
By_Merge 47 697,932 116,323 No 814,255
Balanced 47 112,800 18,800 Yes 131,600
Digits 10 240,000 40,000 Yes 280,000
Letters 37 88,800 14,800 Yes 103,600
MNIST 10 60,000 10,000 Yes 70,000

Table 3.1.

B. Experimental Methodology

As we have more data available in the touch mode than a
pure image bitmap, we have also decided to collect the bitmap
of stroke end points to be able to better distinguish characters
such as '8' and 'B', as mentioned in the overview. The resized
bitmaps of these characters are often similar, but the writing
style of each is usually different. By providing this extra bitmap
with each example, we are giving a hint to the neural network
classifier about what features to focus on when performing
automatic feature extraction with the hidden layer. The pipeline
for recognition based on an image or a camera frame is
different:

1. Acquire the image bitmap in gray-scale colors.

2. Apply a median filter to the bitmap.

3. Segment the bitmap using thresholding to get a binary

bitmap.

4. Find the bounding boxes of external contours in the

bitmap.

5. Extract sub-bitmaps from the bounding boxes.

6. Resize the sub-bitmaps to 20x20 pixels.

7. Unroll the sub-bitmap matrices to feature vectors per

400 elements.

8. Feed each feature vector to a trained multilayer

perceptron, giving us predictions.
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C. \Validation

The proposed alphabet recognition system was trained to
recognize handwritten English alphabets. Since the alphabets
are divided into 25 segments, neural network architecture is
designed specially for the processing of 25 input bits. The
network parameters used for training are: Learning rate
coefficient = 0.05 No. of Units in Input layer = 25 No. of Hidden
Layers = 2 No. of Units in Hidden layer= 25 Initial Weights =
Random [0,1] Transfer Function Used for Hidden Layer 1 =
“Logsig” Transfer Function Used for Hidden Layer 2 =
“Tansig” The training set involves the binary codes of
alphabets.[15] It was not practical to input these shapes
individually when creating training sets, because the shape of a
particular segment of the actual character depends on
handwriting. Therefore, this was automated so that the entire
letter is input to the system, and then the shape of the segment
needed is extracted from this full letter instead of drawing the
shape of the segment itself. The figure below shows the results
for the training dataset (Figure 3.3 and 3.4) and the test
dataset(Figure 3.5).

5

10 15 20 25 0

10

15 20 25

0 5 10 15 20 25 0 10 15 20 25

Figure 3.3
L] 1 1 L] 0
1 L] 1 L] 0
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1 [} 0 L] 0
1 L] L] L] 0
1 L] 0 1 0
0 1 1 L] 0

Figure 3.4
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Figure 3.5

The binary input of each alphabet of different handwriting
styles is then feed to all the units of input layer of the network
at once and the network after processing through hidden layers
and with the training algorithm, Gradient Descent Back
propagation, can be trained for these inputs. Now, the trained
network is capable to recognize the alphabet of different
handwriting. The results are tabulated below.

| =[=[~=|=
el =] =
BEEEE
BEIEIGE]

ol == -e
el o] -
BEIEIEE
ol s|s|sle

Alphabet No. of samples for Mo, of samples for WNo. of epochs % Recognition
training testing Accuracy
a 20 5 294 94.0
b 20 5 321 1.0
c 20 5 587 71.0
d 20 5 282 BE.0
e 20 5 S48 64.0
f 20 5 254 5.0
g 20 5 247 9.0
h 20 5 263 92.0
i 20 5 658 72.0
] 20 5 599 730
k 20 5 300 aL0
1 20 5 652 71.0
m 20 5 456 B6.0
n 20 5 398 82.0
i} 20 5 356 94.0
p 20 5 264 BE.0
q 20 5 287 2.0
r 20 5 669 70.0
H 20 5 202 8.0
1 20 5 2152 79.0
u 20 5 458 80.0
v 20 5 488 77.0
w 20 5 511 94.0
X 20 5 341 9L.0
¥ 20 5 268 7L0
z 20 5 296 90.0
Table 3.2

We can observe from the table that recognition accuracy is
lower for the similar input patterns like: c & e; i, j, | &r; and u
& v. for these similar patterns in different handwriting, even
human eye can not be able easily distinguish, hence the machine
needs lots of training epochs to recognize them but with some
misclassifications.

VIl. CONCLUSION AND FUTURE POSSIBILITIES

This work has mostly been focused on the machine learning
methods used in the project. At first, we reviewed the
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approaches that are nowadays used in similar applications.
After that, we delved into the inner workings of a multilayer
perceptron, focusing on backpropagation and resilient back,
which has been implemented. Even though our dataset consists
of the images of every word separately, some words within
these images were slightly tilted. This was because the
participants of the dataset were asked to write on blank paper
with no lines, and some of the words were written in a more
tilted fashion. This occasion happens very frequently in real life
whether or not the page has lines, thus we decided to make our
training data more robust to this issue by rotating an image
towards the right by a very small angle with random probability
and adding that image to our training set. The technique we
have found to be useful during experimentation was keeping the
number of epochs low when trying out different
hyperparameters. This approach certainly saved us a lot of time
in training; however, it also had its own disadvantages. This
data augmentation technique helped us make our model more
robust to some minor yet so frequent details that might come up
in our test set. Before training the models with the dataset, we
have applied various preprocessing and data augmentation
techniques on our dataset in order to make our data more
compatible with the models and to make our dataset more
robust to real life situations. With the knowledge we had
described, we specified the requirements of the project and
planned the solution. Several improvements for the application
or the learning model used within can be suggested. For
example, the feature extraction performed by the neural
network could be constrained to operate on more strictly
preprocessed data. Also, several classifiers learning on different
features could be combined to make the system more robust.

The proposed and developed a scheme for recognizing
handwritten English alphabets and numbers. It has been tested
on experiment over all English alphabets and numerical digits
with several Handwriting styles. Experimental results shown
that the machine has successfully recognized the alphabets and
numbers with the average accuracy of 82.5%, which significant
and may be acceptable in some applications. The machine
found less accurate to classify similar alphabets and in future
this misclassification of the similar patterns may improve and
further a similar experiment can be tested over a large data set
and with some other optimized networks parameters to improve
the accuracy of the machine.

Firstly, to have more compelling and robust training, we
could apply additional preprocessing techniques such as
jittering. We could also divide each pixel by its corresponding
standard deviation to normalize the data. Next, given time and
budget constraints, we were limited to 20 training examples for
each given word in order to efficiently evaluate and revise our
model. Another method of improving our character
segmentation model would be to move beyond a greedy search
for the most likely solution. We would approach this by
considering a more exhaustive but still efficient decoding
algorithm such as beam search. We can use a character/word-
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based language-based model to add a penalty/benefit score to
each of the possible final beam search candidate paths, along
with their combined individual softmax probabilities,
representing the probability of the sequence of
characters/words. If the language model indicates perhaps the
most likely candidate word according to the softmax layer and
beam search is very unlikely given the context so far as opposed
to some other likely candidate words, then the model can
correct itself accordingly
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