Automated Brain Tumor Detection Using Deep Learning and Flask Web Application

  • Mayuri Thorat
  • Sejal Kahane
  • Abhi Newase
  • Om jadhao
  • C. A. Ghuge
Keywords: Brain tumor detection, Deep learning, Convolutional, neural networks (CNNs), Flask web application, Medical imaging, MRI scans, Transfer learning, Automated diagnosis, Radiology, Model evaluation, Real-time inference, Healthcare technology, Clinical decision support, Timely treatment, Image preprocessing,

Abstract

Brain tumors are an important health issue worldwide, and timely diagnosis is often needed for effective treatment strategies. With advances in deep learning techniques, automated tumor detection systems have emerged as promising tools to help radiologists perform more accurate diagnoses In this paper we present a comprehensive analysis of the brain presenting a tumor detection system developed using deep learning models integrated with the Flask web application. We discuss the program design, implementation, and performance evaluation, and highlight potential impacts on health care delivery.

References

[1] Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118.
[2] Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., ... & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42, 60–88.
[3] Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., ... & Pal, C. (2017). Brain tumor segmentation with deep neural networks. Medical Image Analysis, 35, 18–31.
[4] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097–1105).
[5] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
[6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778)
[7] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234–241). Springer, Cham.
[8] Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., ... & Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285–1298.
[9] Antropova, N., Huynh, B. Q., Giger, M. L., & Alagoz, O. (2017). Differentiable prediction of clinical outcomes with deep learning. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 125–133). Springer, Cham.
[10] Litjens, G., Ciompi, F., Wolterink, J. M., de Vos, B. D., Leiner, T., & Teuwen, J. (2017). State-of-the-art deep learning in cardiovascular image analysis. Journal of Cardiovascular Magnetic Resonance, 19(1), 1–11.
[11] Yoo, Y., Chirag, R., & Park, K. R. (2020). Deep learning-based brain tumor detection and classification using cross-sectional and multimodal MR images. Journal of Healthcare Engineering, 2020, 1–16.
[12] Chirag, R., & Mehta, R. (2021). Ensemble of deep learning models for brain tumor detection using MRI images. Journal of Healthcare Engineering, 2021, 1–10.
[13] Razzak, M. I., Naz, S., & Zaib, A. (2018). Deep learning for medical image processing: Overview, challenges and the future. In Classification in BioApps (pp. 323–350). Springer, Cham.
[14] Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2017). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21.
[15] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
[16] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4), 834–848.
[17] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., ... & Wang, G. (2018). Recent advances in convolutional neural networks. Pattern Recognition, 77, 354–377.
[18] He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In Proceedings of the IEEE international conference on computer vision (pp. 2961–2969).
[19] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[20] Smith, L. N. (2017). Cyclical learning rates for training neural networks. In 2017 IEEE Winter Conference on Applications of Computer Vision (WACV) (pp. 464–472). IEEE.
[21] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510–4520).
[22] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818–2826).
[23] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning (Vol. 1). MIT press Cambridge.
[24] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
Published
2024-04-30
How to Cite
Thorat, M., Kahane, S., Newase, A., jadhao, O., & Ghuge, C. A. (2024). Automated Brain Tumor Detection Using Deep Learning and Flask Web Application. Asian Journal For Convergence In Technology (AJCT) ISSN -2350-1146, 10(1), 69-73. https://doi.org/10.33130/AJCT.2024v10i01.014

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.