Empirical Ratio of Higher Optical Transitions in Semiconducting SWCNTs

  • Mohammad Foysal
  • G. R. Ahmed Jamal

Abstract

In this work, the ‘ratio problem’ among higher
optical transition energies (4th, 5th and 6th transitions) of
semiconducting single-wall carbon nanotube is discussed. A
number of semiconducting single-wall carbon nanotubes having
(n – m) familyrange 2 to 32 with mod (n-m, 3) ≠0 and having
diameter range 1.48nm to 3.44nm are considered. Higher optical
transition energies of all those tubes are recorded from various
experimental reports based on fluorescence and Raman
spectroscopy. Based on that observation, ratio between
consecutive higher transition energies for all semiconducting tube
is expressed empirically through some empirical expressions in
terms of diameter, (n- m) family and mod value. The empirical
ratio matched very well with experiment ratio over the full
diameter range. The proposed empirical way to expressing this
ratio may greatly help in finding the proper ratio of higher
optical transitions without depending on experimental values of
these transitions.The generated pattern from the plot of this
empirical ratio can also help in Photoluminescence based
chirality assignment.

Keywords: Single Wall Carbon Nanotube, Ratio Problem, Optical Transition, Diameter, Chiral Index

References

[1] V. N. Popov, “Carbon nanotubes : properties and application”,
Materials Science and EngineeringR, 43, pp. 61–102, 2004.
[2] T. W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, “Structure and
Electronic Properties of Carbon Nanotubes”, J. Phys. Chem. B, 104,
pp.2794-2809, 2000.
[3] N. Hamada, S. Sawada, and A. Oshiyama, “New one-dimensional
conductors: graphitic microtubules,” Phys. Rev. Lett., Vol.68, No.10,
pp.1579-1581, 1992.
[4] J. W. Mintmire and C. T. White, “Universal density of states for carbon
nanotubes”, Phys. Rev. Lett., Vol. 81, No.12, 1998.
[5] S. Reich and C. Thomsen, “Chirality dependence of the density-of-states
singularities in carbon nanotubes”, Phys. Rev. B, Vol 62, No. 7, 2000.
[6] M.S. Dresselhausa, G. Dresselhausc, A. Jorio, A.G. Souza Filho, R.
Saito, “Raman spectroscopy on isolated single wall carbon nanotubes”,
Carbon, 40, pp.2043–2061, 2002.
[7] J. D. Correa, A. J. R. da Silva, and M. Pacheco, “Tight-binding model for
carbon nanotubes from ab initio calculations,” J. Phys.: Condens. Matter,
Vol.22, No.7, 275503, 2010.
[8] R. Kundu, “Tight binding parameters for graphene”, Modern Physics
Letters B, Vol. 25, No. 3, pp.163-173, 2011.
[9] S. Reich, J. Maultzsch, and C. Thomsen, “Tight-binding description of
graphene,” Phys. Rev. B, Vol.66, No.3, pp.035412, 2002.
[10] Y. Lian, Y. Maeda, T. Wakahara, T. Akasaka, S. Kazaoui, N. Minami,
N. Choi and H. Tokumoto, “Assignment of the Fine Structure in the
Optical Absorption Spectra of Soluble Single-Walled Carbon
Nanotubes”, J. Phys. Chem. B, 107, 12082-12087, 2003.
[11] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y.
Ohtsuka, and Y.Achiba, “Optical properties of single-wall carbon
nanotubes,” Synthetic Met., Vol.103, pp.2555, 1999.
[12] R. B. Weisman and S. M. Bachilo, “Dependence of optical transition
energies on structure for single-walled carbon nanotubes in aqueous
suspension: an empirical kataura plot,” Nano Lett., Vol.3, No.9,
pp.1235-1238, 2003.
[13] M. Y Sfeir., T.Beetz, F Wang, L.Huang, X. M. H Huang., M.Huang, J.
Hone, S. O’Brien, J. A Misewich, T. F.Heinz, L.Wu, Y.Zhu, L. E. Brus,
“ Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes
of Defined Chiral Structure”, Science, Vol. 312, April 2006.
[14] Bachilo S. M., Strano M. S., Kittrell C., Hauge R. H., Smalley R. E.,
Weisman R. B., “Structure-Assigned Optical Spectra of Single-Walled
Carbon Nanotubes”, Science, Vol 298 No. 5602, pp.2361, 2002.
[15] V. Zólyomi and J. Kürti, “First-principles calculations for the electronic
band structures of small diameter single-wall carbon nanotubes”, Phys.
Rev. B70, 085403, 2004.
[16] V. N. Popov,“Curvature effects on the structural, electronic and optical
properties of isolated single-walled carbon nanotubes within a
symmetry-adapted non-orthogonal tight-binding model”, New Journal
of Physics, Vol. 6, 2004.
[17] H. Zeng, H. F. Hu, J. W. Wei, Z. Y. Wang, L. Wang, and P. Peng,
“Curvature effects on electronic properties of small radius nanotube,”
Appl. Phys. Lett., Vol.91, No.3, pp.033102, 2007.
[18] O. Gulseren, T. Yildirim and S. Ciraci, “A systematic ab-initio study of
curvature effects in carbon nanotubes”, Phys. Rev. B 65, 153405, 2002.
[19] J W Ding, X H Yan, J X Cao, “Analytical relation of band gaps to both
chirality and diameter of single-wall carbon nanotubes”, Phys. Rev. B ,
Vol. 66, Issue 7, Pages: 2-5, 2002.
[20] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, “Trigonal warping effect
of carbon nanotubes,” Phys. Rev. B, Vol.61, No.4, pp.2981-2990, 2000.
[21] Kane C. L. and Mele E. J., “The Ratio Problem in Single Carbon
Nanotube Fluorescence Spectroscopy”, Phys. Rev. Lett. 90, 207401,
2003.
[22] E. J. Mele, C.L. Kane, “Many body effects in carbon nanotube
fluorescence spectroscopy”, Solid State Communications 135, pp. 527–
531, 2005.
[23] H. Lin, J. Lagoute, V. Repain, C. Chacon, Y. Girard, J.-S. Lauret, F.
Ducastelle, A. Loiseau S. Rousset , “Many-body effects in electronic
bandgaps of carbon nanotubes measured by scanning tunnelling
spectroscopy”, Nature Materials 9, 235–238, 2010.
[24] C. D. Spataru, S. I. Beigi, L. X. Benedict and S. G. Louie, “Excitonic
Effects and Optical Spectra of Single-Walled Carbon Nanotubes”, AIP
Conf. Proc., vol 772, p. 1061-1062, 2004.
[25] H. Zhao, S. Mazumdar, “Excitons in semiconducting single-walled
carbon nanotubes”, Synthetic Metals, 155, p.250–253, 2005.
[26] G. Dukovic, F. Wang, D. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus,
“Structural dependence of excitonic optical transitions and band-gap
energies in carbon nanotubes,” Nano Lett., Vol.5, No.11, pp.2314-2318,
2005.
[27] M.J. O'Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano,
E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H.
Hauge, R.B. Weisman, and R.E. Smalley, “Band Gap Fluorescence
from Individual Single-Walled Carbon Nanotubes”, Science 297,
pp.5581-5593, 2002.
Statistics
0 Views | 0 Downloads
How to Cite
Foysal, M., & Jamal, G. R. A. (2019). Empirical Ratio of Higher Optical Transitions in Semiconducting SWCNTs. Asian Journal For Convergence In Technology (AJCT). Retrieved from http://asianssr.org/index.php/ajct/article/view/770
Section
Article