A systematic review on Android Malware Detection

  • Kezang Dema
  • Thinley Jamtsho
Keywords: Keywords-Android malware, Dynamic analysis, Static analysis, Anomaly, Signature-based

Abstract

Android malware is growing at alarming rate and spreading rapidly despite on-going mitigating efforts. This brings  a  necessity  to  find  more  effective  solutions  to  detect those malwares and prevent users from any malicious threats. The aim of the systematic review is to summarize the situation that existed from 2010 to 2015 with regards to various android malware analysis approaches and detection methods. A total of 58  selected  papers  met  the  inclusion  criteria  based  on  title  of articles, exclusion criteria, reading abstract and content of the selected  58  papers.  Different  data  are  extracted  from  these articles  and  recorded  in  an  excel  sheet  for  further  analysis. Most of the paper discussed about the use of dynamic analysis approach to analyze malware and signature-based method for malware detection.  The  systematic  review  carried  out  would provide information to all researchers and further inform the requirements  for  future  development  of  enhanced  malware analysis and detection methods.

References

[1]Aafer, Y., Du, W. and Yin, H. (2013) ‘DroidAPIMiner: mining API-level features for robust malware detection in android’, International Conference on Security and Privacy in Communication Networks, pp. 86-103.
[2]Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H. and Rieck, K. (2014) ‘Drebin: effective and explainable detection of android malware in your pocket’, in Proc. NDSS.
[3]Chan, P. P. K. and Song, W. (2014) ‘Static detection of android malware by using permissions and API calls’, IEEE International Conference on Machine Learning and Cybernetics, pp. 82-87.
[4]Ham, H. and Choi, M. (2013) ‘Analysis of android malware detection performance using machine learning classifiers’, IEEE International Conference on ICT Convergence, pp. 490-495.
[5]Isohara, T., Takemori, K. and Kubota, A. (2011) ‘Kernel-based behavior analysis for android malware detection’, IEEE Seventh International Conference on Computational Intelligence and Security (CIS), pp. 1011-1015.
[6]Landage, J. and Wankhande, M. P. (2013) ‘Malware and malware detection techniques: a survey’, International Journal of Engineering Research and Technology, 2(12), pp. 61-68.
[7]Wu, D., Mao, C., Wei, T., Lee, H. and Wu, K. (2012) ‘Droidmat: android malware detection through manifest and API calls tracing’, IEEE Seventh Asia Joint Conference on Information Security, pp. 62-69.
[8]Wu, Z., Zhou, X. and Xu, J. (no date) ‘A result fusion based distributed anomaly detection system for android smartphones’, Journal of Networks, 8(2), pp. 273-282.
Published
2020-03-26
How to Cite
Dema, K., & Jamtsho, T. (2020). A systematic review on Android Malware Detection. Asian Journal For Convergence In Technology (AJCT), 5(3), 83-86. Retrieved from http://asianssr.org/index.php/ajct/article/view/925