Radial Fatigue Analysis of Automotive Wheel Rim(ISO 3006)

  • Priyam Deka
  • Faramarz Bagherzadeh
  • Sundeep Murugesan

Abstract

Due to many unexpected harsh environmental conditions of the road, automotive wheel is a vital part to ensure the vehicle safety and performance. ISO-3006 provides a comprehensive fatigue life experiment to validate proper wheels. This article is investigating a car wheel under the dynamic radial fatigue test of the ISO standard. This study aims to compare five different commercially available materials of the wheel concerning the ISO test conditions. As the wheel rim weight has a great impact on the performance of the vehicle, this comparison is considering the weight of the wheel made of various materials. The test is simulated via ANSYS software with a dens mesh to ensure the highest possible accuracy of results. Among selected materials, the CFRP is demonstrating the best fatigue strength to weight ratio in ISO radial fatigue test.

Keywords: Radial Fatigue, CFRP, Wheel Analysis, ISO-3006

Downloads

Download data is not yet available.

References

[1] N. Satyanarayana and C. Sambaiah, ‘Fatigue Analysis of Aluminum Alloy Wheel Under Radial Load’, Int. J. Mech. Ind. Eng., vol. 2, no. 1, pp. 1–6, 2012.
[2] S. Czypionka and F. Kienhöfer, ‘Weight reduction of a carbon fibre composite wheel’, Sci. Eng. Compos. Mater., vol. 26, no. 1, pp. 338–346, 2019, doi: 10.1515/secm-2019-0018.
[3] Y. L. Hsu and M. S. Hsu, ‘Weight reduction of aluminum disc wheels under fatigue constraints using a sequential neural network approximation method’, Comput. Ind., vol. 46, no. 2, pp. 167–179, 2001, doi: 10.1016/s0166-3615(01)00125-7.
[4] W. Pang, W. Wang, W. Zhang, and X. Wang, ‘Modeling and optimization for lightweight design of aluminum alloy wheel hub’, Key Eng. Mater., vol. 723 KEM, pp. 322–328, 2017, doi: 10.4028/www.scientific.net/KEM.723.322.
[5] Z. G. Zheng, G. W. Cai, and Z. J. Li, ‘Simulation of automotive wheel rigidity test’, 2010 Int. Conf. Intell. Comput. Technol. Autom. ICICTA 2010, vol. 3, pp. 318–321, 2010, doi: 10.1109/ICICTA.2010.605.
[6] Q. Gao, Y. Shan, X. Wan, Q. Feng, and X. Liu, ‘90-Degree Impact Bench Test and Simulation Analysis of Automotive Steel Wheel’, Eng. Fail. Anal., vol. 105, no. June, pp. 143–155, 2019, doi: 10.1016/j.engfailanal.2019.06.097.
[7] X. Wan, X. Liu, Y. Shan, E. Jiang, and H. Yuan, ‘Numerical and experimental investigation on the effect of tire on the 13° impact test of automotive wheel’, Adv. Eng. Softw., vol. 133, no. March, pp. 20–27, 2019, doi: 10.1016/j.advengsoft.2019.04.005.
[8] J. Meng, P. Zhu, Z. Liu, and Q. Ji, ‘Integration of multi-step stamping effects in the bending fatigue analysis of a steel wheel’, Fatigue Fract. Eng. Mater. Struct., vol. 36, no. 8, pp. 795–808, 2013, doi: 10.1111/ffe.12047.
[9] K. Linghu, B. Xiao, D. Zhang, X. Li, F. Wang, and Z. Wang, ‘Shape Optimization of Passenger Vehicle Wheel on Fatigue Failure’, IOP Conf. Ser. Mater. Sci. Eng., vol. 381, no. 1, 2018, doi: 10.1088/1757-899X/381/1/012025.
[10] W. Chai, X. Liu, Y. Shan, X. Wan, and E. Jiang, ‘Research on simulation of the bending fatigue test of automotive wheel made of long glass fiber reinforced thermoplastic considering anisotropic property’, Adv. Eng. Softw., vol. 116, no. November 2017, pp. 1–8, 2018, doi: 10.1016/j.advengsoft.2017.11.004.
[11] G. Rapids, G. Rapids, and R. U. S. A. Data, ‘States Patent’, vol. 2, 2020.
[12] Murphy et al., ‘United States Patent : 5861366 United States Patent : 5861366’, New York, vol. 2, no. 12, pp. 1–29, 2010.
[13] Torayca, ‘T300 Data Sheet’, No. CFA-001, pp. 6–7, 2002, [Online]. Available: www.toraycfa.com/pdfs/T300DataSheet.pdf.
[14] A. Amiri and M. N. Cavalli, ‘Experimental investigation of fatigue behavior of carbon fiber composites using fully reversed four point bending test’, Conf. Proc. Soc. Exp. Mech. Ser., vol. 7, no. January, pp. 131–137, 2013, doi: 10.1007/978-1-4614-4553-1_15.
[15] L. H. Zhao, H. C. Cai, S. Weng, and S. L. Zheng, ‘Effect of pre-strain on the fatigue behavior of SAPH440 steel’, Mater. Express, vol. 9, no. 9, pp. 1001–1008, 2019, doi: 10.1166/mex.2019.1586.
[16] R. Vijayakumar, C. Ramesh, R. Boobesh, R. Ram Surya, and P. Souder Rajesh, ‘Investigation on automobile wheel rim aluminium 6061 and 6066 Alloys using ANSYS WORKBENCH’, Mater. Today Proc., no. xxxx, 2020, doi: 10.1016/j.matpr.2020.03.798.
[17] A. V. Structures, ‘Military Handbook Metallic Materials and Elements for’, no. December, 1998.
[18] S. Suman, J. A. Abrol, and K. Ravi, ‘Impact and modal analysis for different alloy wheel compositions’, IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 6, 2017, doi: 10.1088/1757-899X/263/6/062074.
[19] S. Thirumalvalavan and N. Senthilkumar, ‘Experimental investigation and optimization of hvof spray parameters on wear resistance behaviour of TI-6AL-4V alloy’, Comptes Rendus L’Academie Bulg. des Sci., vol. 72, no. 5, pp. 664–673, 2019, doi: 10.7546/CRABS.2019.05.15.
[20] F. O. R. Standardization and D. E. Normalisation, ‘International Standard Iso’, vol. 1987, 1987.
[21] JIANG Xin et al., ‘Multi-objective Optimization Design of Magnesium Alloy Wheel Based on Topology Optimization’, J. Mater. Sci. Eng. B, vol. 9, no. 1, pp. 13–24, 2019, doi: 10.17265/2161-6221/2019.1-2.003.
[22] S. S. Panda, J. Gurung, U. K. Chatterjee, and S. Sahoo, ‘Modeling-and-Fatigue-Analysis-of-Automotive-Wheel-Rim’, Int. J. Eng. Sci. Res. Technol., vol. 5, no. 4, pp. 428–435, 2016, doi: 10.5281/zenodo.49728.
[23] L. Natrayan, P. Santhakumar, P. Dinesh, K. R. Mohan, U. Scholar, and R. Mohandass, ‘Design and Comparative Analysis of Old & New Model Car Wheel Rims with Various Materials’, J. Res., vol. 02, no. 02, 2016.
[24] E. M. Adigio and E. O. Nangi, ‘Computer Aided Design and Simulation of Radial Fatigue Test of Automobile Rim Using ANSYS’,
Statistics
0 Views | 0 Downloads
How to Cite
Deka, P., Bagherzadeh, F., & Murugesan, S. (2021). Radial Fatigue Analysis of Automotive Wheel Rim(ISO 3006). Asian Journal For Convergence In Technology (AJCT), 7(1), 66-70. https://doi.org/10.33130/AJCT.2021v07i01.015