Deep learning based heart disease prediction
Abstract
Data mining is the process of data analyzing from
various perspectives and combining it into useful information.
This technique is used for finding heart disease. Based on risk
factor the heart diseases can be defined very easily. The main aim
of this work is to evaluate different classification techniques in
heart diagnosis. First, the ECG numeric dataset is extracted and
preprocess them. After that using extract the features that is
condition to be find to be classified by Convolution Neural
Network (NN).Compared to existing; Convolution Neural
Network provides better performance. After classification,
performance criteria including accuracy, precision, F-measure is
to be calculated. Compared to KNN, Convolution Neural
Network provides better performance. The comparison measure
expose that Convolution Neural Network is the best classifier for
the diagnosis of heart disease on the existing dataset.
References
“Classification of Heart Disease Using K- Nearest Neighbor and Genetic
Algorithm” Conference on Computational Intelligence: Modeling
Techniques and Applications (CIMTA)2013.
[2] Beshiba Wilson, Dr.Julia Punitha Malar Dhas “A Survey of Non-Local
Means based Filters for Image Denoising” International Journal of
EngineeringResearch&Technology,Vol.2-Issue10(October–2013.
[3] Chaitrali S Dangare “Improved Study Of Heart Disease Prediction
System Using Data Mining Classification Techniques”, International
Journal Of Computer Applications, Vol.47, No.10 (June2012).
[4] Amma, N.G.B “Cardio Vascular Disease Prediction System using
Genetic Algorithm”, IEEE International Conference on Computing,
Communication and Applications,2012.
[5] SayantanMukhopadhyay1,ShouvikBiswas2,AnamitraBardhanRoy3
, Nilanjan Dey4’ Wavelet Based QRS Complex Detection of ECG
Signal’ International Journal of Engineering Research and Applications
(IJERA) Vol. 2, Issue 3, MayJun 2012, pp.2361-2365
[6] Sahar H. El-Khafifand Mohamed A. ElBrawany, “Artificial Neural
Network-Based Automated ECG Signal Classifier”, 29 May2013.
[7] M.Vijayavanan, V.Rathikarani, Dr. P. Dhanalakshmi, “Automatic
Classification of ECG Signal for Heart Disease Diagnosis using
morphologicalfeatures”.ISSN:22293345Vol.5No.04Apr2014.
[8] I. S. Siva Rao, T. Srinivasa Rao, “Performance Identification of
Different Heart Diseases Based On Neural Network Classification”.
ISSN 0973-4562 Volume 11, Number 6 (2016) pp3859-3864.
To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording of the form be changed. This form is intended for original material submitted to AJCT and must accompany any such material in order to be published by AJCT. Please read the form carefully.
The undersigned hereby assigns to the Asian Journal of Convergence in Technology Issues ("AJCT") all rights under copyright that may exist in and to the above Work, any revised or expanded derivative works submitted to AJCT by the undersigned based on the Work, and any associated written, audio and/or visual presentations or other enhancements accompanying the Work. The undersigned hereby warrants that the Work is original and that he/she is the author of the Work; to the extent the Work incorporates text passages, figures, data or other material from the works of others, the undersigned has obtained any necessary permission. See Retained Rights, below.
AUTHOR RESPONSIBILITIES
AJCT distributes its technical publications throughout the world and wants to ensure that the material submitted to its publications is properly available to the readership of those publications. Authors must ensure that The Work is their own and is original. It is the responsibility of the authors, not AJCT, to determine whether disclosure of their material requires the prior consent of other parties and, if so, to obtain it.
RETAINED RIGHTS/TERMS AND CONDITIONS
1. Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
2. Authors/employers may reproduce or authorize others to reproduce The Work and for the author's personal use or for company or organizational use, provided that the source and any AJCT copyright notice are indicated, the copies are not used in any way that implies AJCT endorsement of a product or service of any employer, and the copies themselves are not offered for sale.
3. Authors/employers may make limited distribution of all or portions of the Work prior to publication if they inform AJCT in advance of the nature and extent of such limited distribution.
4. For all uses not covered by items 2 and 3, authors/employers must request permission from AJCT.
5. Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party requests for reprinting, republishing, or other types of re-use.
INFORMATION FOR AUTHORS
AJCT Copyright Ownership
It is the formal policy of AJCT to own the copyrights to all copyrightable material in its technical publications and to the individual contributions contained therein, in order to protect the interests of AJCT, its authors and their employers, and, at the same time, to facilitate the appropriate re-use of this material by others.
Author/Employer Rights
If you are employed and prepared the Work on a subject within the scope of your employment, the copyright in the Work belongs to your employer as a work-for-hire. In that case, AJCT assumes that when you sign this Form, you are authorized to do so by your employer and that your employer has consented to the transfer of copyright, to the representation and warranty of publication rights, and to all other terms and conditions of this Form. If such authorization and consent has not been given to you, an authorized representative of your employer should sign this Form as the Author.
Reprint/Republication Policy
AJCT requires that the consent of the first-named author and employer be sought as a condition to granting reprint or republication rights to others or for permitting use of a Work for promotion or marketing purposes.
GENERAL TERMS
1. The undersigned represents that he/she has the power and authority to make and execute this assignment.
2. The undersigned agrees to indemnify and hold harmless AJCT from any damage or expense that may arise in the event of a breach of any of the warranties set forth above.
3. In the event the above work is accepted and published by AJCT and consequently withdrawn by the author(s), the foregoing copyright transfer shall become null and void and all materials embodying the Work submitted to AJCT will be destroyed.
4. For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent
for the others.
Licenced by :
Creative Commons Attribution 4.0 International License.